
 Advanced search

Linux Journal Issue #121/May 2004

Features

Transactions and Rollback with RPM by James Olin Oden
Learn to back out problem upgrades, and you'll be saving your
“swear jar” money for cold beverages.

HEC Montréal: Deployment of a Large-Scale Mail Installation by
Ludovic Marcotte

If you thought you had mail problems, try 600,000 spams a day.
SPF, MTAs and SRS by Meng Weng Wong

Spam “from” you? Gone. Spam forged from other SPF-using
domains? Gone. Do we have your attention yet?

Policy Routing for Fun and Profit by David Mandelstam and Nenad
Corbic

A bargain Net connection gets expensive over its traffic limit.
Routing mastery will keep bills in check and Net performance
snappy.

Indepth

The Linux-Based Recording Studio by Aaron Trumm
Fill in the parts between the mic and the Linux box, and make
records the way you want.

Using SQL-Ledger for Your Business by David A. Bandel
If the proprietary accounting system is the last obstacle to your
all-Linux office, you just bought the right magazine.

Automating Tasks with Aap by Bram Moolenaar

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/121/7034.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7323.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7328.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7290.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7215.html

Do what make can, and more, with the next-generation software
build tool.

How to Build LSB Applications by Stuart R. Anderson
Use these simple tools to make your app binary-compatible with
the leading distributions.

Embedded

Shielded CPUs: Real-Time Performance in Standard Linux by Steve
Brosky

Add another tool to the real-time toolbox—simply dedicate one
processor to your most critical task.

Toolbox

At the Forge Blosxom by Reuven M. Lerner
Kernel Korner Using DMA by James Bottomley
Cooking with Linux Eye Candy for Admins? by Marcel Gagné

Columns

EOF Open Legal Research by Pamela Jones

Review

Practical Programming in Tcl and Tk by Marty Leisner

Departments

From the Editor
Letters
upFRONT
On The Web
Best of Technical Support
New Products

Archive Index

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7067.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7392.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7104.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7417.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7429.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7119.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7412.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7376.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7408.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7411.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7409.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7410.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Transactions and Rollback with RPM

James Olin Oden

Issue #121, May 2004

When an upgrade works, you get a few more features or better performance.
When an upgrade fails, you're in for a weekend of pain. Now, here's how to
back off to the old version and keep the system up.

How many times have you installed a great new piece of software only to find
you really didn't want to install it after all? To make matters worse, when you
installed this software, you had to upgrade several other software packages
and install additional ones from scratch. To put things back the way they were,
you had to locate earlier versions of the upgraded packages from a multitude
of sources, downgrade to these versions and remove any newly installed
packages. Of course, if you did not keep a good record of what packages
actually were changed and what their previous versions were, things got even
worse. Wouldn't it be great if you instead could push one button or run a single
command and roll back this upgrade?

In some environments the ability to roll back an upgrade quickly is not only
desirable, it is a requirement. For instance, when upgrading a
telecommunications company's equipment, software and hardware vendors
are required to upgrade equipment in a limited time frame, known as a
maintenance window. In this same maintenance window, they also must be
able to back out any changes made by the upgrade. Failure to back out an
upgrade within the maintenance window results in strict financial penalties.

 Rolling Back an Upgrade the Hard Way

As desirable as an automated rollback of RPMs is, RPM has not supported this
option until recently. To be fair, RPM has supported downgrading a set of
packages. For instance, if you upgraded some RPM foo-1-1 to the version
foo-1-2, you could use the --oldpackage switch with the rpm command to
downgrade to a previous version; like this:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

rpm -Uvh --oldpackage foo-1-1.i386.rpm
Preparing... ################# [100%]
Upgrading...
 1:foo ################# [100%]

If the upgrade to foo-1-2 did not require you to upgrade or install any
additional RPMs, the --oldpackage switch worked fine. All you had to do was
find the original foo-1-1 RPM, and you were home free. If, on the other hand,
you did need to install or upgrade other RPMs on which foo-1-2 depended, you
then had to search for those RPMs in various locations—on your install media,
on your distribution's errata site, in various RPM repositories or on various
project Web sites.

Once you had hunted down all the dependent RPMs, you would need to
downgrade all the ones you had upgraded and erase the fresh ones you had
installed. If, instead, you reversed this order and erased the fresh RPMs you
had installed before you downgraded the RPMs that had been upgraded, you
were greeted with errors from RPM complaining that these packages were
required by foo-1-2. In short, the old way of rolling back a set of RPMs was
painful and fraught with error.

 Transactional Rollbacks to the Rescue

Early in 2002, Jeff Johnson, the current maintainer of RPM, began to remedy this
rollback problem when he included the transactional rollback feature into the
4.0.3 release of RPM. This feature brought with it the promise of an automated
downgrade of a set of RPMs. Like many new features, it was rough around the
edges and completely undocumented, except for a few e-mails on the RPM
mailing list (rpm-list@redhat.com). Over the past year and a half, transactional
rollbacks have matured steadily. In the current RPM 4.2 release, which comes
with Red Hat 9, transactional rollbacks are quite usable.

 How RPM Transactional Rollbacks Work

Under the hood, RPM treats any set of RPMs it installs as a discrete transaction.
This is true when installing one RPM by itself (a transaction of one RPM) or
several RPMs simultaneously. Each of these transactions is given a unique
transaction ID (TID). As each RPM is installed or upgraded, its entry in the RPM
database is marked with the TID of the transaction within which it was installed.
This allows RPM to track within which transaction each RPM was installed or
upgraded.

To roll back an RPM transaction set, RPM must have access to the set of RPMs
that were on the system at the time the transaction occurred. It solves this
problem by repackaging each RPM before it is erased and storing these
repackaged packages in the repackage directory (by default, /var/spool/

repackage). Repackaged packages contain all the files owned by the RPM as
they existed on the system at the time of erasure, the header of the old RPM
and all the scriptlets that came with the old RPM.

You may be wondering how this design helps with upgrades. After all, if you
upgrade an RPM you're not erasing it. You are erasing it, though, because
upgrading an RPM has two parts: the new package is installed, and the old
package is erased. This means every time you upgrade a set of packages, RPM
first repackages all packages being updated, then installs all the new packages
and, finally, erases all the old packages. When RPM repackages the old
packages, it also marks the repackaged packages with the TID of the running
transaction. The end result is you don't have to scour the Net, media or
backups for the RPMs you updated. Because the repackaged packages contain
the files that were currently on your system at the time of the upgrade, the
need to restore configuration files from backup is eliminated. As a side effect,
the md5 checksums of the files in a repackaged package are likely to be wrong,
because RPM does not recalculate each checksum when creating the
repackaged package. This is not a problem for RPM when it rolls back
transactions, but you need to use the --nodigest option to manipulate
repackaged packages directly.

Once the repackage directory is populated, RPM requires only a rollback target
(the date to which it is rolling back) to perform the rollback. RPM then
determines by TID which transactions have been applied to your system since
the rollback target date. Next RPM takes this set of transactions, sorts them in
the order of most recent to least recent and does the following for each one:

• Finds all the repackaged packages that are marked with this TID.
• Finds all the currently installed packages that are marked with this TID but

do not have corresponding repackaged packages.
• Builds a rollback transaction. Repackaged packages are added to this

transaction as install elements, and installed packages that have no
corresponding repackaged package are added as erase elements.

• Runs the newly built rollback transaction.

By repeating these actions for each transaction from the most recent one to
the one nearest or equal to the target date, RPM walks through all transactions
that have occurred since the rollback goal and undoes them.

 How to Use RPM Transactional Rollbacks

You may be thinking this process is complicated, but using transactional
rollbacks actually is rather easy. As a simple example, let's install a single RPM
and roll it back. The most crucial point you have to remember is that whenever

you do an upgrade or simple erase, you must tell RPM to repackage the old
package before it is erased. To do this, use the --repackage option:

rpm -Uvh --repackage foo-1-2.noarch.rpm
Preparing... ############################# [100%]
Repackaging...
 1:foo ############################# [100%]
Upgrading...
 1:foo ############################# [100%]

Using this option, RPM first repackaged the old package and then upgraded the
new one. On an erase, you also need to use the --repackage option, like this:

rpm -e --repackage foo

RPM does not show any output from an erase, but if you look in the repackage
directory after an erase, a repackaged package is there.

To roll back this RPM transaction, use the --rollback option followed by the
rollback target. The rollback target can be an actual date or something like one
hour ago (the date specifier allows the same date formats as the cvs(1)
command's -D option). So, if an hour after upgrading foo, you decide you don't
want it, you could type:

rpm -Uvh --rollback '2 hours ago'
Rollback packages (+1/-1) to
Thu Jul 31 23:26:52 2003 (0x3f29ddfc):
Preparing... ########################### 100%]
 1:foo ########################### [33%]

The output Rollback packages (+1/-1) shows that RPM is going to add
one package, the previous version, and erase one package, the currently
installed version.

 How to Set Up a System for Rollbacks

Transactional rollbacks are only as good as your local repackaged packages
repository. One quick way of making them fail is to upgrade or erase something
without using the --repackage option. From my experience, it is pretty easy to
forget to use this option. Therefore, if you are going to use transactional
rollbacks, you want to configure RPM to repackage all erasures automatically.
Do this by setting the %_repackage_all_erasures macro to 1 in your /
etc/rpm/macros file. If the file does not exist simply create it:

%_repackage_all_erasures 1

By default, RPM does not roll back a newly installed package; that is, it does not
erase packages that were not on the system at the time of your upgrade. You

probably don't want this to be the default behavior, so you need to tell RPM to
allow for this. To do this, set the macro %_unsafe_rollbacks to the date beyond
which you do not want to allow an RPM to be completely erased on a rollback.
A good value for this is some time after your system's initial install. This date
should be in seconds since epoch. To convert a date to seconds since epoch,
use the date command:

date --date="8/1/2003" +%s
1059710400

If you wanted to tell RPM not to remove packages completely that were
installed on or before 8/1/2003 (the date in the above example), you would add
the following to the /etc/rpm/macros file:

%_unsafe_rollbacks 1059710400

The only other thing you may want to configure is where RPM puts the
repackaged packages. One reason for doing this is to ensure they are placed in
a partition that has ample space. To change the repackage directory, set the
%_repackage_dir macro to the directory where you wish to store the
repackaged packages:

%_repackage_dir /my_rp_repository

Now you have a system that automatically repackages all erasures (so you or
someone else does not forget), erases newly installed packages on a rollback
(but won't erase your whole system) and places the repackaged packages
where you want to store them.

 Using up2date to Roll Back RPM Transactions

In Red Hat 9, up2date supports rollbacks using RPM's transactional rollback
mechanism. Configuring it to support transactional rollbacks is as simple as
running up2date-config, clicking the Retrieval/Installation tab and then
clicking the Enable RPM rollbacks check box (see Figure 1). You have to
configure RPM itself as described in the previous section. When you upgrade
your system using up2date, once you have configured both RPM and up2date,
RPM creates the repackaged packages of RPMs you are updating before it
upgrades those packages.

Figure 1. Enabling RPM Rollbacks in up2date

To list the different known rollback targets, type:

up2date --list-rollbacks

You should receive a listing like this:

up2date --list-rollbacks
install time: Sun Jul 27 20:49:55 2003 tid:1059353395

 [-] goo-1.0-1.0:

install time: Tue Jul 29 20:44:25 2003 tid:1059525865
 [-] foo-1-2:

This command is handy even if you are not actually using up2date, because the
rpm command does not provide a way of displaying such information.

To undo a transaction, use the --undo option, which undoes the last transaction
that was installed. Simply type:

up2date --undo

If you want to roll back multiple transactions, run this command multiple times.
The ability to roll back from the GUI is not supported.

 Auto-Rollback Patch

RPM normally delivers packages using a best effort strategy, meaning if one or
more RPMs fails to install, the remaining RPMs in the transaction still are
installed. This is a desirable behavior in some environments, but in others it
would be much better if, instead, RPM automatically rolled back the failed
transaction. Because I work in such an environment (telecommunications), I
wrote a patch called the auto-rollback patch. This patch allows you to configure
RPM such that if a transaction fails, RPM automatically rolls back the failed
transaction. It does leave behind the failed RPM if it failed in its %post scriptlet;
hopefully that soon will be fixed (patches anyone?).

If you would like to use this feature, you can download the patch (or RPMs that
have the patch applied) from lee.k12.nc.us/~joden/misc/patches/rpm. Once you
have a version of RPM installed with the auto-rollback patch, you need to
configure RPM to use the auto-rollback feature. To do so, edit /etc/rpm/macros
and add the following macro definition:

%_rollback_transaction_on_failure 1

After doing this, the next time you install/upgrade a set of RPMs and one fails to
install, RPM automatically rolls back the failed transaction, except for the failing
one if it failed in the %post scriptlet.

 Conclusion

RPM transactional rollbacks provide an efficient way of undoing RPM upgrades.
They also provide a solid building block upon which system update programs
(such as up2date, yum and apt-get) can provide automated rollback
functionality. However, transactional rollbacks are not for everyone. To quote
Jeff Johnson, “the --rollback option...requires absolutely perfect system
administration and is mostly mechanism, not policy.” Transactional rollbacks
are an all-or-nothing affair. Care must be taken to ensure that all erasures are
repackaged, as RPM's ability to roll back transactions is only as good as its
source of repackaged packages. The administrator must ensure that extra
space is allocated for the storage of the repackaged packages. Finally, RPM's
transactional rollback feature is a work-in-progress. That said, RPM
transactional rollbacks have come a long way from their beginnings. If you want
to ensure that RPM updates to a system can be undone quickly, they may be
exactly what the doctor ordered.

James Olin Oden (joden@lee.k12.nc.us) is a software engineer at Tekelec. He
has administered UNIX-type systems and developed under them for over a
decade. He also is the creator of Tech Tracker (tt.lee.k12.nc.us), a Web-based IT-
tracking system.

http://lee.k12.nc.us/~joden/misc/patches/rpm
mailto:joden@lee.k12.nc.us
http://tt.lee.k12.nc.us

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 HEC Montréal: Deployment of a Large-Scale Mail

Installation

Ludovic Marcotte

Issue #121, May 2004

Forced to upgrade by a flood of junk mail, this university went to a heavy-duty
system based on Linux. And, they made it a seamless transition without
disturbing users' existing mail configurations.

Over the past few years, e-mail has grown into one of the most important
communication mediums. Naturally, e-mail infrastructures must be fast, secure
and reliable. Ideally, they also should be able to integrate easily and effectively
with anti-unsolicited bulk e-mail (UBE) solutions.

HEC Montréal is Canada's first management school, founded in 1907. More
than 11,000 students and 220 professors use HEC's e-mail system every year,
and alumni keep their e-mail accounts after graduation. Unfortunately, the
proprietary e-mail system did not evolve and as the load started to increase,
the infrastructure could no longer keep up with requirements.

The previous mail infrastructure at HEC Montréal was based on four IBM AIX
servers running Netscape Messaging Server 4.15. Each of those servers offered
all services (IMAP, POP3, SMTP and Webmail access) for a subset of users. The
system simply did not scale to current mail requirements. According to Eddy
Béliveau, Senior Network Analyst at HEC Montréal:

We found ourselves with mail server software that had
not been upgraded in the last two years because the
AIX platform was no longer supported by Sun/iPlanet/
Netscape, which owned the mail server software. We
had a regular increase of our e-mail traffic during the
last 12 months due to the presence of UBE and viruses
trying to replicate themselves. We got peaks of over
100 concurrent SMTP connections, which was too
much for our servers; the typical load average was
over 50 on all servers. We could not, on our old

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

133MHz servers, execute any anti-virus or anti-UBE
applications, not even a simple RBL filtering policy.
Thus, we had to re-examine the hardware and
software architecture of our e-mail system but [could]
not find time to install alternatives. We were like a dog
running after his tail trying to stabilize the situation.

HEC Montréal contacted us at Inverse, Inc., to help them replace the mail
infrastructure and deploy a better alternative.

Figure 1. HEC Montréal is a tough e-mail problem: 35,500 users and more than 600,000 spam
messages a week.

 The Proposed Solution

The proposed solution was driven by the following factors:

• Cost: HEC Montréal could not afford a per-user license fee for 35,500
users.

• Ease of maintenance: the infrastructure had to be easy to manage.
Accounts creation and destruction should be automated, updates should
be easy to apply and the infrastructure should let HEC Montréal leverage
the expertise they have.

• Security: the components of the solution should have a proven security
track record.

• Robustness: the components should be mature and should have been
used in production environments for months. Furthermore, the

https://secure2.linuxjournal.com/ljarchive/LJ/121/7323f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7323f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7323f1.large.jpg

development should be active to accelerate bug fixes, feature
enhancements and security updates.

• Scalability: the solution must meet its purpose for many months, because
the number of users grows by 2,000–3,000 every year. Its architecture also
should allow adding extra servers to distribute the load or offer more
redundancy.

When we were first approached, HEC Montréal was leaning toward a Linux-
based solution running Novell NetMail 3.1. Having great experience with free
alternatives, we decided to compare the solution we had in mind with Novell's
offerings.

That said, we built two identical test environments using Red Hat Linux 9 and
installed NetMail 3.1 on one and our proposed solution on the other. Next, we
performed a series of stress tests in order to measure the stability and the
performance of the two solutions. The tests were performed with two
benchmarking utilities, postal and tm. The results showed that while NetMail
was the fastest for POP3 operations, it proved to be the slowest in the IMAP
and SMTP tests. It also had a lot of stability issues when overloading the server
with IMAP requests.

Combined with our experience, we proposed a solution based almost entirely
on open-source components. We started with a standard Red Hat Linux 9
distribution using Silicon Graphics, Inc.'s XFS kernel packages. We included
Cyrus IMAP and Cyrus SASL, which included IMAP, LMTP and POP3 dæmons as
well as authentication libraries and redirection/vacation scripts support using
Sieve. Next, Postfix, AMaViS, SpamAssassin, Vipul's Razor and NAI VirusScan
were added to build a complete SMTP server solution with enhanced tools to
limit the delivery of UBE and viruses. Apache, PHP4, IMAP Proxy and
SquirrelMail provided a complete Webmail solution. OpenLDAP was added to
store all information regarding users' accounts (e-mail address and aliases,
SquirrelMail preferences and so on), as well as other specific attributes of HEC
Montréal. Finally, we installed Linux HA Heartbeat, software used to monitor
the health of some nodes on the network.

The new infrastructure is running on 11 IBM eServer xSeries x305 and x335
servers. The two x335s are connected to an IBM FAST 700 Storage Array
Network (SAN) using Fibre Channel, where the mailstore resides. The XFS
filesystem is used for the mailstore in order to maximize file access operations.
Figure 2 depicts the architecture.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7323f2.large.jpg

Figure 2. Architecture of the Proposed Infrastructure

Four STMP servers running Postfix are used: two of them are mail exchangers
(MXes) for the HEC Montréal domains and the other two serve internal mailing
needs. These servers also use AMaViS, SpamAssassin, Vipul's Razor and
Network Associates' VirusScan to limit the delivery of UBE and viruses.
Furthermore, two Cyrus IMAP servers are connected using serial and Ethernet
cables for high availability. Only one Cyrus IMAP server is active at any moment;
it serves all POP3 and IMAP connections, stores mails on the SAN (received
using the LMTP protocol from the four Postfix servers) and processes Sieve
scripts.

Two Webmail servers run Apache, PHP4, SquirrelMail and IMAP Proxy. The
latter is used to cache IMAP connections between SquirrelMail and the Cyrus
IMAP server in order to minimize the load (authentication and process forks) on
the mailstore. Finally, one other server is used only for testing purposes. That
is, any modifications to the infrastructure must go through this server, which is
configured to run every component, before being applied to the environment
in production.

With regard to the UBE filtering, we check mail at many levels to ensure we
block as many as we can. Our checks include carefully chosen real-time
blackhole lists (RBLs); header and MIME header checks using up-to-date maps
from SecuritySage, Inc.; and content filtering initiated from AMaViS using
SpamAssassin, Vipul's Razor for UBEs analysis and VirusScan for viruses.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7323f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7323f2.large.jpg

This solution has proven to be greatly effective and produces few false
positives. The system also was built with load balancing and failover in mind.
The SMTP and the Webmail servers are used in a round-robin fashion,
efficiently distributing the load among all of them.

The main Cyrus server has an identical backup server in case of failure. The
latter is connected to the main Cyrus server and uses Heartbeat to monitor the
availability of the server. In case of a failure (hardware problem, operating
system crash and so on), the secondary Cyrus server takes over all services.
Heartbeat automatically mounts the mailstore (located on the SAN), activates
the network alias and starts all Cyrus services. This offers a warm switch-over
that minimizes the outage time; sometimes it's not even noticeable.

Finally, the LDAP system offers a master node together with a slave that
replicates the former using slurpd. All services are configured to failover
automatically to the slave in case of a failure on the master node. Some
services also are configured to use the slave as the master node in order to
distribute the LDAP load among both servers; they failover to the master node.

 Migration

After putting the 11 servers for the new infrastructure in place, one of the
remaining challenges was to migrate all users from the old infrastructure to the
new one. About 35,500 users, 82,500 mailboxes and hundreds of thousands of
messages (35GB of mail) had to be migrated. Furthermore, redirection scripts
and vacation messages also had to be converted, and information such as
preferences from the previous Webmail system had to be kept intact. In order
to do this, we created a set of Perl scripts to take care of the entire migration in
a way that would appear seamless for the users:

• LDAP Init: populates the new LDAP server (based on OpenLDAP) using the
values from the previous LDAP server (based on Netscape iPlanet).
Included attributes are e-mail addresses and aliases, special folders and
signature preferences for Webmail.

• Create Users: creates all user accounts about to be migrated.
• Load Sieve: creates Sieve scripts and uploads them to the mailstore by

reading attributes from the previous LDAP server. Sieve scripts are used
for automatic redirections and vacation messages.

• Copy Mailboxes: copies all mailboxes for the users being migrated. All
message flags are kept intact. The IMAP protocol is used a lot in this script.
This script also updates the mailHost attribute on both LDAP servers so
the mails are routed to the correct destination mailboxes.

• Update Mailboxes: run the morning after the migration to move the
remaining (if any) messages in the users' mailboxes. Mail could have been

stuck in the queue of the SMTP servers, before the users' mailHost
attributes were changed.

To minimize service interruptions for the users, we ran the scripts in the order
listed once classes were finished at the end of the day. Few messages were
rejected during the import process; those that were simply were retried by the
source SMTP servers. In total, four nights were required to migrate all the
information. Running the scripts took from four to seven hours, depending on
the number of users located on each source server and the execution speed,
which was mainly limited by the performance of the old AIX servers.

 Key Statistics

After the migration, we extensively monitored all services in order to discover
any problems. As expected, we didn't have many. We mainly tuned the
minimum preforks of Cyrus processes as well as their respective maximum
children. We also tuned the SMTP servers for the default process limits and
preforks for AMaViS. We also used temporary LDAP queries during the
migration, so we had to replace them with optimized ones once the migration
finished.

During a typical day, HEC Montréal receives over 125,000 e-mails, and 60% to
80% of the traffic is composed of UBEs. The internal SMTP servers also manage
thousands of messages sent by users, distribution lists or other systems. About
300,000 POP3 connections (from 5,500 different users) and 60,000 IMAP
connections (from 5,000 different users) are initiated every day on the main
Cyrus server. Peaks of 225 concurrent IMAP connections and 50 concurrent
POP3 connections frequently are encountered.

As mentioned earlier, the anti-UBE policies in place have proven to be effective.
During the first week after the migration, the two mail exchangers blocked
more than 600,000 unsolicited bulk e-mails. The week after, spammers were
less aggressive and the systems blocked over a quarter of a million messages.
The most effective policy is the RBL checks, followed by the content filtering
checks (using SpamAssassin and Vipul's Razor) and, finally, the header and
MIME header checks.

To extract those statistics, we installed Spamity, which parses mail logs from
the four Postfix servers and updates a PostgreSQL database running on the
test server. Thereafter, users or administrators can examine the mail that was
blocked by anti-UBE policies by using a simple Web browser. Users also can
perform searches for specific e-mail addresses or domain names and filter the
results by anti-UBE policies.

 Conclusion

As you have seen in this article, migrating from a proprietary solution to an
open-source solution was a challenge. According to Emmanuel Vigne,
Information Systems Director at HEC Montréal:

The key business benefits are huge, as we nearly
eliminated UBE and greatly enhanced the architecture
of our mail infrastructure. We moved from an
architecture where all services were offered by four
servers to an architecture where the services are
offered by many servers. That allows us to minimize
any potential outage and scale as the number of users
grow. In case of a failure, only one specific service is
affected, contrary to the situation before where
thousands of users could no longer use the e-mail
service in case of a single server failure.

Putting this new infrastructure in place allowed us to contribute to the Open
Source community by developing a set of patches to correct bugs and/or add
features to most components we installed.

As with any other system, this one will evolve over time. Interesting anti-UBE
technologies are emerging, such as Sender Policy Framework (SPF) [see page
50] and Spamhaus Exploits Block List (XBL), and a new stable version of Cyrus is
available with NNTP and mailbox annotations support. In addition, Postfix 2.1 is
coming along nicely and should offer excellent connection/rate control with its
new anvil server.

Finally, as this article was being written, a mirroring solution was being
deployed for the SAN. This should offer storage redundancy and eliminate the
single potential point of failure in the current infrastructure.

Resources for this article: /article/7456.

Ludovic Marcotte (ludovic@inverse.ca) holds a Bachelor's degree in Computer
Science from the University of Montréal. He currently is a software architect for
Inverse, Inc., an IT consulting company located in downtown Montréal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7456.html
mailto:ludovic@inverse.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 SPF, MTAs and SRS

Meng Weng Wong

Issue #121, May 2004

Last month, we learned how to flag outgoing e-mail as authentic using DNS.
Now, it's time to check incoming mail and protect our users from forged spam
and worms.

Sender Policy Framework (SPF) takes aim at the practice of return-path
spoofing, a technique employed by worms, viruses and other senders of
unwanted mail. SPF consists of two parts. First, domain administrators publish
SPF records in the DNS. Those records describe the servers the domain uses for
outbound mail. Then they are read by SPF-enabled MTAs. Mail coming from a
server not described in SPF can be considered forged.

This article, the second of a two-part series, explains how to add SPF
capabilities to your mail server. It also discusses how e-mail forwarding and
Web-generated e-mail services can adjust to SPF by performing sender
rewriting.

This article was written in early February 2004 and reflects the state of the
Internet at that time. The MyDoom worm, a virus that spoofs return-path
addresses, recently had littered millions of mailboxes with bogus bounce
messages.

 It's Your Turn

Last month I described how to construct an SPF record, and DNS
administrators all over the world responded. First, they published records, then
crossed their fingers and waited. What are they waiting for? They're waiting for
you. They've made it possible for you to distinguish their legitimate mail easily
from forgeries. Now it's your turn to help them cut down on bogus bounces
and abuse reports. If you're just tuning in, see the on-line Resources section for
last month's article and an easy Web-based SPF wizard.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Adding SPF to Your MTA

The major mail transfer agents (MTAs) in the Linux world are Sendmail, Postfix,
Qmail and Exim. Although most antispam vendors already have SPF support
included in their products or plan to add it in their next release, MTAs tend to
want to leave that task up to you. Most MTAs offer an interface into which you
can plug your antispam tool.

SPF can be made to work in your MTA in two ways. If you're the kind of
sysadmin who prefers to compile your own software, start at the SPF
downloads page. There you can find the SPF plugin that's right for your MTA,
plus detailed installation instructions. If you prefer to manage your software
using a package system, you may find an SPF-enabled version of your MTA
already built and ready to install.

Most of the plugins rely on the reference Perl library Mail::SPF::Query. You can
install that library directly from CPAN, or you can try to find a package for it. It
provides a simple program to run SPF queries at the command line. It also
provides a simple dæmon that handles SPF query requests over a UNIX domain
or inet socket.

By default, most of the plugins tell the MTA to reject messages that fail SPF
tests and add a Received-SPF header to the rest. Conservative installations may
prefer to add the line Received-SPF: fail instead of rejecting. This
configuration option is described in the plugin documentation.

 Sendmail

Sendmail's plugin interface is called Milter (see on-line Resources). Recent
Sendmail versions have Milter capability compiled in by default. Sendmail talks
to Milter through a socket interface. Sendmail tells Milter about the incoming
SMTP transaction, and Milter tells Sendmail what to do. Milter runs as a dæmon
and needs to be started separately.

Two Milters should be available at the SPF Web site: one in Perl and one in C.
The Perl version is a little more mature, but if you need speed, the C version
may be a better choice.

To make Milter work with Sendmail, add a couple of lines to your sendmail.mc
file, rebuild sendmail.cf and restart Sendmail.

If you'd rather not use Milter, libspf comes with a patch that integrates SPF
directly into Sendmail.

 Postfix

Postfix 2.1 comes with a policy dæmon interface. It works much like Milter
does: Postfix connects to the dæmon and provides a play-by-play commentary,
and the dæmon returns an action to Postfix. If you're running a recent
development snapshot of version 2.0, make sure you're using 2.0.18-20040122
or later.

Policy dæmons are configured in main.cf and master.cf. They are managed by
Postfix, which starts and stops them as needed, so you don't need to worry
about that. The Postfix policy dæmon is written in Perl and calls the standard
Mail::SPF::Query library.

 Exim

Exim 4 introduced Access Control Lists (ACLs), a powerful and compact mini-
language for making antispam and other local policy decisions. The ACL code
that handles SPF for Exim is only about 12 lines long.

You need to install the Mail::SPF::Query library and run its SPF dæmon, which
listens on a socket. The SPF ACL connects to the spfd and reads it the client IP,
HELO argument and MAIL FROM sender address. It then receives an SPF result,
a response for the SMTP server and a Received-SPF header line. You need to
start the spfd separately.

 Qmail

Qmail does not have the same kind of plugin interface that the other MTAs do.
Instead, SPF provides a patch that integrates SPF directly into Qmail. In
addition, many Qmail users screen their mail with qpsmtpd: if you do, SPF is a
plugin you can turn on easily.

James Couzens is the primary author of the C SPF library. libspf comes with a
patch for Qmail and for other MTAs as well.

 Testing the Plugin

Once you've installed the plugin and turned it on, you should perform two
tests. First and most important, legitimate mail needs to get through. If
something broke, maybe you're not running something you need to—double-
check. If it's still broken, back out the patch and report your experience to the
spf-help mailing list.

Second, confirm that forged mail is rejected. If you can speak SMTP by hand,
engineer a message with MAIL FROM:<linuxjournal-test@altavista.com>. The
domain altavista.com is not used for mail, so it always returns a FAIL message.

They have asked that test messages contain the word test. This can be tricky to
execute because if they recognize a trusted client, both your MTA and SPF will
turn a fail into a pass. Therefore, don't telnet to localhost; use your machine's
actual hostname, and if possible try to open the connection from an outside
host. If you receive a 550 response and an error message that refers to
spf.pobox.com/why.html, it's working.

If you use a secondary MX, tell your SPF client not to reject its mail. How to do
this is described in detail in the installation instructions for your plugin.

 Received-SPF: What the Codes Mean

You should notice that your mail now contains a Received-SPF header that
carries a number of result codes:

• NONE: the domain does not publish SPF records. Your MTA should
proceed as usual.

• PASS: the mail is not forged, but that doesn't mean it's legitimate.
Remember, spammers can publish SPF too. You still should test its
domain against a right-hand-side block list (RHSBL). But if the sender is on
your trusted whitelist, you can skip further antispam checks with
confidence.

• FAIL: the mail is a forgery, and you can reject it with confidence. There is a
miniscule chance the message is legitimate but was sent by a
misconfigured sender. In that case, the error message they receive tells
them they need to configure their MUA with SMTP AUTH. SPF's design
philosophy is that it's better to fail obviously with a hearty error message
than to risk silently burying mail in a spambox.

• SOFTFAIL: the message could be a forgery, but the domain's ISP is working
on switching its users to SMTP AUTH, so the message could be legitimate.
You should accept the message, but subject it to more stringent antispam
checks.

• NEUTRAL: the domain just has started down the road to SPF, and their
default response is ?all. They would like you to pretend the response
was NONE while they consider moving the default toward SOFTFAIL and
FAIL. Big ISPs with millions of users move slowly; it's not their fault.

• ERROR: there was a temporary DNS lookup error. Normally, your MTA
should return a 450 temporary failure when this happens.

• UNKNOWN: a permanent error caused the SPF lookup to abort; perhaps
there was a syntax error in the record, or maybe the record pointed to
another domain that doesn't have an SPF record.

http://spf.pobox.com/why.html

 The Price of SPF

In the past ten years we have grown tremendously dependent on e-mail; we
are made aware of just how dependent we are every time a worm hits. Analysts
routinely announce that spam and viruses cost the economy billions of dollars.
The success of SPF shows that people are desperate for change.

But, change has its own price. If there were such a thing as a painless solution
to spam, we already would have adopted it. The war on spam has dragged on
so long in part because the best experts on spam simply could not agree on
exactly what trade-offs they wanted to make, but that phase of debate is
drawing to a close. In every antispam future they have discussed, sender
authentication is the first and fundamental step. Now, many possible sender
authentication models are available, but the designated-sender scheme that
SPF provides is probably the easiest to implement.

Cryptography definitely is in our future, but it's not here yet. Like first aid, SPF
offers immediate benefit, and it's something we can do right away.

What is the price of SPF? Every designated sender scheme breaks two things.
First, SPF breaks verbatim e-mail forwarding (Figure 1). Services that provide
permanent e-mail addresses, such as pobox.com, are used to forward mail the
way UNIX .forward and /etc/aliases files do. When the mail leaves their servers,
the return-path address in the envelope is unchanged. But in an SPF world,
resent messages now look a lot like forgeries. To fix this, forwarding services
need to rewrite their return paths. So do other sites that depend on .forward
and /etc/aliases to send mail off-site.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7328f1.large.jpg

Figure 1. Old-school e-mail forwarding breaks under SPF.

The solution is called SRS, sender rewriting scheme. It encapsulates the original
sender address in the rewritten, SPF-compliant, return address. If a message
should bounce, it comes back to you, and you unwrap the address and forward
the bounce back to the sender. Forwarding services would have to do this even
in a world without SPF, because ISPs already are performing pseudo-SPF
checks. SPF simply gave everyone a standard way to do what they already were
doing piecemeal. In the same way that responsible sites closed down their
open relays over the past few years, in the coming months responsible sites will
begin to operate SRS-compliant forwarding; pobox.com already is doing SRS,
and other forwarding services are expected to follow.

The good news is the community that developed SPF already has produced SRS
code for your MTA. Those patches are available from the same place you got
your SPF patches. By the time you read this, they even might be bundled into
your MTA. The goal is for the average installation to be able to upgrade to the
latest version and have SRS magically work (see Resources).

So, this solves the e-mail forwarding problem. Getting SRS into the field is
simply a matter of time. But SPF also breaks Web-generated e-mail. Greeting
card sites and “e-mail me this news article” sites tend to use your e-mail
address not only in the From: header but in the envelope sender too. In SPF
terms, that kind of behaviour is indistinguishable from forgery.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7328f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7328f1.large.jpg

To solve this problem, those sites can do one of two things. First, if the mail
they send isn't that important, they can set the return-path address to
nobody@example.com and eat the bounces. Newer, more progressive sites,
such as Orkut, already do something like this. But if the mail is important, was
sent on behalf of a user who was logged in to the Web site properly, and if the
Web site had previously confirmed the user's e-mail address, then the Web site
could perform SRS on itself—encapsulating the user's return address so that
bounces would be properly forwarded.

What about the transition period, you ask. Won't there be a time of disruption
while the forwarders groan their way toward SRS-compliance? What about the
sites that are unwilling or slow to adapt?

Well, here's a little secret. We have a fairly good idea who the major culprits
are; we know, for instance, that eBay sometimes sends mail with a legitimately
forged envelope return-path. The people who developed SPF use eBay, too,
and they don't want to lose e-mail any more than you do. So they came up with
a hack. They set up a whitelist that identifies all these legitimate forgers;
pobox.com is on the list, as are acm.org, eBay and the newspaper Web sites
that do “e-mail me this article”.

Every SPF client we've talked about in this article knows about that whitelist.
Every SPF client we know of gives that whitelist a chance to override a fail. If
your mother sends mail from her AOL account to your acm.org address, your
SPF client accepts that message, even though it's technically a forgery. (If you
get forwarded mail through a system that's not on the list—from, say, a friend's
home Linux box—you should whitelist that box in your MTA.) When acm.org
implements SRS, the problem will go away.

SPF's critics tend to say “it breaks forwarding”. The SPF community rose to the
occasion and did their best to ease the transition. They offered two solutions,
one short-term and one long-term, that meet in the middle. Together they
sugarcoat the bitter pill.

Change means pain. The transition to an SPF world won't be painless, but it's
like the pain of an injection that makes the illness go away. E-mail is very sick.
Some say it will not survive spam, but I don't agree. I think SPF will set it firmly
on the road to recovery.

Resources for this article: /article/7465.

Meng Weng Wong is founder and CTO of pobox.com, the e-mail forwarding
company, which celebrates its tenth anniversary this year. He is working on a

https://secure2.linuxjournal.com/ljarchive/LJ/121/7465.html
http://pobox.com

science-fiction novel set on a planet where traditional fantasy magic turns out
to be implemented, following Clarke's famous dictum, using nanotechnology.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Policy Routing for Fun and Profit

David Mandelstam

Nenad Corbic

Issue #121, May 2004

Get the bandwidth you need without a surprise bill at the end of the month.

Sangoma is a manufacturer of PCI-based WAN interface cards. For
demonstrations and redundancy, we have two separate high-speed Internet
connections: a full T1 carrying Frame Relay, using our PCI S5148 T1/E1 modem,
and an ADSL connection carrying PPPoE over ATM, using our PCI S518 ADSL
modem. The ADSL line is shared with our fax machine, the only telephone line
not connected to our PBX. We use two different ISPs for the services. The ADSL
and fax telephone line are provided by Bell Canada's Sympatico service, and
the T1 Frame Relay connection is provided by MCI.

Figure 1. For redundancy and cost control, the policy routing server has both T1 and ADSL
connections.

 Bandwidth and Costs

The combination of the installed T1 and ADSL Internet links provide reliable
connectivity, but the resultant bandwidth is excessive for our requirements.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f1.large.jpg

Sangoma's Web site is hosted by Earthlink in Atlanta, so our Internet access
requirements are not too different from any other company's, primarily e-mail
and Web access, with some FTP traffic mainly as uploads to the FTP server on
our Web site. We could manage without a fixed IP address, although we do find
it valuable that the T1 link is provisioned with a range of fixed addresses.

All our Internet servers are Linux-based. Although we support Windows,
FreeBSD, Solaris and other popular operating systems, Linux is our most
important platform, and only Linux has the rich toolset of traffic management
routines we need. The layout is shown in Figure 1.

The ADSL line is inexpensive, especially after the rebate we get for using our
own ADSL modem instead of the consumer-grade external ADSL modem
normally provided as part of the service. T1 in Canada is expensive as
compared to the US; the cost of a standard unrestricted T1 Internet link can
exceed $1,900 CAN ($1,450 US) per month.

Sangoma resells Internet access to two other tenants in our building to offset
costs somewhat. The other parties sharing our connections host Web and VPN
services, so they need both fixed addresses and high outbound bandwidth,
which is why they are interested in sharing our T1 line. The private and public
segments of the T1 line are shown in Figure 2.

Figure 2. Two tenants in the building buy Internet access from Sangoma.

The two Sangoma Linux machines could be combined into one quite easily. The
combination router would have another NIC to support the public network
segments to customers A and B. Sangoma's firewall would operate between
Sangoma's private LAN segment and all the other public segments, which
include the Frame Relay T1 link, the ADSL link and the public Ethernet link.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f2.large.jpg

The financial contributions from customers A and B are not enough to pay for a
full T1 at Canadian prices. The solution for us was to employ a usage-based
service for T1. This is a so-called burstable T1 service, which is about half the
price of a full bandwidth T1 line. The T1 use is unrestricted up to the full
bandwidth of 1,536Mbps full duplex. Billing is based on the 95th percentile of
the bandwidth used. Traffic is sampled in five-minute intervals, and the average
bandwidth for the five minutes is calculated. At the end of the month, these
five-minute bins are arranged in decreasing order of bandwidth. The top 5%
are discarded, and the billing rate depends on the next highest bin for the
month. The trigger throughput in our case is 128kbps. If our 95th percentile
throughput exceeds 128kbps, the monthly line charge is incremented by a
minimum of $300.

This complicated billing structure is hard for subscribers to understand. It looks
like a good deal to the customer but is difficult to manage and hard to
measure. The billing rate is measured at the 5% level, where the rate of change
of the usage curve is near a maximum. So, many users find themselves paying
high bills that depend on the bandwidths of only one or two five-minute bins
out of the more than 8,500 bins measured each month. Unless one's traffic is
consistently low, one quickly finds that the surcharges are such that one may as
well bite the bullet and take the full T1, even though the average throughput
may be well below 128kbps.

The major plus is that the highest 5% of bandwidth usage for each month is
“free”. This amounts to about 36 hours per month at any bandwidth without
penalty, so almost a full working week out of the month is available at full line
speed. Figure 3 shows the ideal traffic pattern for achieving the highest
throughput for the lowest cost on our burstable T1 service. Essentially, the aim
of the traffic control logic is to restrict the T1 bandwidth to 128kbps after the
first free 36 hours of unrestricted bandwidth has been consumed in a given
month.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f3.large.jpg

Figure 3. To achieve the lowest possible cost, the ideal T1 traffic pattern uses the full T1 line
only 5% of the time.

So how do we manage to take the bait without the hook? With a series of
scripts and dæmons that use a combination of policy routing, IP accounting and
traffic shaping we can manage the network intelligently, so both we and our co-
users get maximum performance at minimum cost.

 Policy Routing with iptables and iproute2

The first step is to unload the T1 of all the traffic that could be routed through
the ADSL line without losing service quality. Our ADSL line runs at a
downstream rate of 1,728kbps, with an upstream rate of 800kbps. The T1
nominal rate is 1,536kbps, full duplex. The ADSL line is less efficient than the
Frame Relay T1 line because of the high ATM and error correction overheads.
So in terms of useful throughput, the incoming or down rates of the T1 and
ADSL lines are similar.

We are fortunate that our particular ADSL connection seems to have a low level
of oversubscription, so our performance is more consistent than that of many
similar installations. Normally, ADSL links are oversubscribed at the central
office end by up to 200 or 300 times, which results in poor performance in peak
periods. But even with our near perfect ADSL line, the true upstream rate of the
ADSL line is less than half that of the T1. It therefore makes sense to use ADSL
for downstream traffic and reserve the T1 for the upstream flow.

Apart from the speed differences, the other major difference between our
Frame Relay T1 line and the ADSL line is that the T1 offers a small range of fixed
IP addresses, whereas the ADSL line is assigned an IP address by a DHCP
server. At a minimum, services that need to support unsolicited incoming traffic
on a fixed IP address, such as Web servers, need to be on the T1 line.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f3.large.jpg

Downstream-heavy traffic consists mainly of Web browsing, e-mail traffic and
incoming FTP traffic, which is handled well by the high downstream rate of the
ADSL line. We also have the same type of traffic originating from a third server
belonging to customer A. Thus, almost all the traffic from Sangoma and the
third-customer server is routed through the ADSL line. The exception is
outgoing SMTP mail traffic, which benefits from the increased upstream
bandwidth of the Frame Relay T1 line.

Customers A and B have three servers between them. Of these, one is a Web
server that needs a fixed IP address and has mostly outbound traffic. Another
is a VPN server that also requires a fixed IP address; its traffic is light. All the
traffic for both of these servers is routed through the T1 line with its fixed IP
addressing structure.

The Sangoma policy solution is a staged process where outgoing packets
traverse a set of rules and policies to achieve the desired traffic distribution.
Only outgoing packets are distributed between the two interfaces, because we
cannot control the path of incoming traffic. However, once the packets leave a
particular interface, either T1 or ADSL, the response comes back through the
same interface.

The advanced routing tools and utilities available for Linux give us the means to
manage the network and achieve our desired goals. The Linux kernel supports
multiple routing tables, allowing each physical connection to have its own
routing table. Once we have a separate table for each of our physical interfaces,
we use iptables and iproute2 to lead traffic into either routing table. From
there, the packets follow a default route out to the appropriate physical
interface.

The iproute2 suite contains a configuration file that is used to assign routing
tables to the Linux routing stack. By default, the tr_tables contains a single
routing table definition, main. This is the standard routing table used by the
Linux routing stack. Listing 1 shows the routing table entry we added for our
ADSL line, adsl. Individual routes are added to these routing tables using
standard Linux commands. The outgoing packets must traverse six stages
between router input and output.

Listing 1. Multiple Routing Tables

cat /etc/iproute2rt_tables
#
reserved values
#
#255 local
#254 main
#253 default
#0 unspec
local

#1 inr.ruhep
200 adsl

 Input over Ethernet

The first step is iptables mangle rules where traffic is tagged as either Tag 1 for
ADSL or Tag 2 for T1. To give all Sangoma mail Tag 2, for example, we apply the
rule:

iptables -t mangle -A PREROUTING -i eth0 \
-p tcp -s xxx.xxx.xxx.82 --dport smtp -j t1_line

We then use the iptables --set-mark option in the t1_line chain:

iptables -t mangle -N t1_line
iptables -t mangle -A t1_line -j MARK --set-mark 2
iptables -t mangle -A t1_line -j ACCEPT

We have similar rules for traffic going to the ADSL line.

The iproute2 policy points Tag 1 to the ADSL routing table and Tag 2 to the
main routing table, which goes to the T1 line:

ip rule del fwmark 1 table adsl
ip rule add fwmark 1 table adsl

ip rule del fwmark 2 table main
ip rule add fwmark 2 table main

 Routing Tables

The default route of the ADSL routing table is ppp0, representing a PPP over
Ethernet (PPPoE) link. The Ethernet then is encapsulated into ATM (EoA), and it
is ATM cells that traverse the ADSL link to the telco DSLAM.

If the ppp0 interface goes down, the ADSL default route is removed
automatically by the kernel and replaced with the main routing table. Thus, if
the ADSL line fails, all traffic destined for the ADSL routing table is diverted to
the presumably more reliable main routing table. We do get the occasional
ADSL outages that are endemic to low cost, unmanaged broadband services
like ADSL. These outages last from a few seconds to several hours, but there is
no loss of user functionality because the traffic switches transparently to the T1
line. The T1 interface is good backup for the ADSL line, but the reverse is not
true. Most of the hosts that use the T1 link do so because they need to use
fixed IP addresses; they cannot be serviced adequately with the ADSL line that
has a non-fixed IP address.

The default route of the main routing table is wan0 (T1). All traffic coming into
this routing table is forwarded to the T1 line.

 Masquerading Outgoing Traffic

Outgoing Internet traffic over the ADSL connection comes from servers with
routable IP addresses. These address types need to be NATed; otherwise, the
traffic routed to the real IP addresses comes back over the T1 line:

iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

Our tagging and policy routing is shown in Figure 4.

Figure 4. Tagging and policy routing allows for failover to the T1 line if the ADSL line goes
down.

 IP Accounting

Once we have directed the appropriate traffic to the ADSL line, we need to
manage residual T1 traffic so that the usage boundaries are never exceeded.
The magic 95th percentile point always must be less than or equal to 128kbps.
We first measure the traffic using IP accounting, which allows us to gauge
average throughput over a specified time interval.

All incoming and outgoing packets on the T1 line pass through IP accounting
rules. Each customer's traffic is measured based on the IP address and
direction of the traffic.

A custom dæmon has been written to check the T1 bandwidth used for each
five-minute period or bin. Each time the T1 throughput is greater than 128kbps
averaged over a five-minute period, a counter is incremented. The 128kbps
threshold corresponds to about 4.5MB over the five-minute period.

If the counter reaches 432, that represents the free 36 hours per month. In
turn, that equals 5% of the time in a month, and the TC (traffic control) script is
executed to clamp the T1 line down to 128kbps, until the start of the next
month. The IP accounting configuration file is shown in Listing 2, available from

https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f4.large.jpg

the Linux Journal FTP site [ftp.linuxjournal.com/pub/lj/listings/
issue121/7134.tgz].

 Traffic Control

We usually get through the month without having to clamp the T1 line.
Sometimes, however, the free 36 hours are consumed. In this case, traffic
control (TC) is used to clamp the bandwidth. The documentation covering traffic
control and the tc command can be found at lartc.org/manpages.

We use Qdisc class-based queuing (CBQ) discipline for both the T1 line, wan0
and the local Ethernet, eth0. This is done for both connections to implement
flow control in both traffic directions:

tc qdisc add dev wan0 root handle 10: \
cbq bandwidth 1500Kbit avpkt 1000
tc qdisc add dev eth0 root handle 20: \
cbq bandwidth 1500Kbit avpkt 1000

Next, add Global Class with maximum bandwidth for wan0 and eth0. The
maximum bandwidth for both lines is 1,500kbps (T1):

tc class add dev wan0 parent 10:0 classid 10:1 \
cbq bandwidth 1500Kbit avpkt 1000 rate 1500Kbit \
allot 1514 weight 150Kbit prio 8 maxburst 0
tc class add dev wan0 parent 20:0 classid 20:1 \
cbq bandwidth 1500Kbit avpkt 1000 rate 1500Kbit \
allot 1514 weight 150Kbit prio 8 maxburst 0

Add User Class with limited bandwidth for both wan0 and eth0. The bandwidth
limit we use is 100kbps, not 128kbps. Linux TC is not perfectly accurate, and we
determined through trial and error that if we set the bandwidth limit higher
than 100kbps, sometimes the burst traffic could go over 128kbps:

tc class add dev wan0 parent 10:1 classid 10:100 \
cbq bandwidth 1500Kbit avpkt 1000 rate 100Kbit \
allot 1514 weight 10Kbit prio 8 maxburst 0 bounded
tc class add dev eth0 parent 20:1 classid 20:100 \
cbq bandwidth 1500Kbit avpkt 1000 rate 100Kbit \
allot 1514 weight 10Kbit prio 8 maxburst 0 bounded

Add SFQ queuing discipline for the User Class, on both wan0 and eth0. The
default queuing discipline Stochastic Fairness Queueing (SFQ) has been
selected. A number of other disciplines also could be employed:

tc qdisc add dev wan0 parent 10:100 \
sfq quantum 1514b perturb 15
tc qdisc add dev eth0 parent 20:100 \

https://secure2.linuxjournal.com/ljarchive/LJ/listings/121/7134.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/121/7134.tgz
http://lartc.org/manpages

sfq quantum 1514b perturb 15

Bind the traffic tagged number 2 to the User Class Queue for both wan0 and
eth0. All traffic destined for the T1 line already has been tagged with number 2.
The traffic control only limits the T1 traffic, while letting ADSL traffic flow at its
full physical rate:

tc filter add dev wan0 parent 10:0 protocol ip \
prio 25 handle 2 fw flowid 10:100
tc filter add dev eth0 parent 20:0 protocol ip \
prio 25 handle 2 fw flowid 20:100

 Results

The policy routing works perfectly as programmed, directing the traffic as
appropriate to the T1 and ADSL links and providing redundancy in case the
ADSL link fails. The traffic management on the T1 has been satisfactory, and we
generally have been able to provide our users with a respectable service
transparently. Of course, the consistency of traffic throughput during a single
month is dependent on how rapidly the free bandwidth is consumed.

As an example of our T1 traffic management see Figure 5, which shows Frame
Relay T1 bandwidth usage during May 2003. The red line on the graph
represents 128kbps, which is our threshold limit for billing. Throughput
clamping occurred after May 23. One of our customer's servers became
infected with a virus that generated a great deal of traffic during the month,
consuming our precious free bandwidth. As a result, these customers were
required to exist for more than a week running at 128kbps on the T1 line. ADSL
traffic, of course, was not affected.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f5.large.jpg

Figure 5. Bandwidth Usage by Five-Minute Bins during May 2003

The same data presented with the five-minute bins listed by bandwidth is
shown in Figure 6. This graph may be compared with the ideal usage shown in
Figure 3. Notice the billing rate of 122.07kbps indicated in this figure. This
reflects the success of the traffic control procedures in ensuring that the billing
rate remained below 128kbps.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7134f6.large.jpg

Figure 6. Bandwidth Usage by Five-Minute Bins during May 2003, Ranked by Bandwidth

 Conclusion

Although this is quite a simple implementation of policy routing, IP accounting
and traffic shaping, it does provide an illustration of how the Linux advanced
routing tools can provide the kind of control needed to manage sophisticated
traffic policies.

David Mandelstam is President of Sangoma Technologies Corp. Founded in
1984, Sangoma develops and manufactures wide area network (WAN)
communication hardware and software products, with an emphasis on the PC
platform. The communications solutions and routing products support all
popular WAN networks, line protocols and all standard PC operating systems
and platforms.

Nenad Corbic is Senior Linux Developer at Sangoma Technologies Corp.
(www.sangoma.com).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.sangoma.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 The Linux-Based Recording Studio

Aaron Trumm

Issue #121, May 2004

With a Linux-based hard disk recorder, you can create your own project studio
on a budget. Now the only thing between you and that great album you want to
make is practice, man, practice.

I grew up using keyboards. Cold-war grey TRS-80s, green-screened Apple IIs,
IBM clones, 8088s, 286s, PC-DOS, then Windows (missing the command line)
and finally UNIX command lines. Later, the recording bug bit me and took me
away from the command line and into studios. I still was a PC guy, but there
never was a reason to bring a computer into the studio. Affordable hard drives
and memory were too small for audio, sound cards were junk and processors
were too slow.

Then, Linux came along. Sure, I had to wait for hard drives to get bigger and
chip speeds to increase, but even after that, proprietary software still was way
out of reach. So I upgraded my studio, learning a lot about Linux along the way.
Here, I share a bit of what I did in my studio and explain how you might start a
Linux-based studio. General information about Linux audio and recording is
vast, so I refer you to further resources where appropriate (see the on-line
Resources section).

 How to Set Up a Linux Studio

Like anything, what you need to buy for your studio and how you set it up is
determined by a few key decisions, especially when it comes to studio
hardware. The hardware is easy as 3.1415. Anything that runs Linux can run
Linux audio applications, but bear the following in mind:

• Audio uses 5MB per track minute at CD quality (44.1KHz, 16 bit), meaning
a three-minute song recorded in stereo takes up 30MB on the hard drive.
Multitracking uses more than two tracks. A typical project of 24 tracks that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

is three-minutes long would use 360MB, not including captured audio
being used.

• Slight upgrades to things like RAM size and CD-ROM speed are nice if you
have older equipment. A CD writer is your friend, too, as you might have
guessed.

• Some bad video cards introduce noise into the sound card.
• Drivers in Linux are sometimes hard to come by, so read and ask around

before buying hardware, especially sound cards.

Acquiring software is almost as easy. Latency needs to be low, so the kernel
needs a bit of a tweak in the form of a low-latency patch. The hard drive needs
to be tuned correctly too. This subject is more than I can cover here, but check
out the Resources on the Web for other readings. Also, keep a dual-boot
system with Microsoft Windows for troubleshooting. You may need to test
hardware on another operating system to narrow a problem to a Linux driver,
or you may have tasks, such as upgrading firmware, that need to be done on a
Windows box.

Now that we've got the box, it's time to decide what studio hardware we need. I
like to think of the signal flow for a given project, and that tells me what I need.
Figure 1 shows the basic concept of where a signal goes in a recording project.
Also take a look at Figures 2 and 3; 2 is a wiring scheme for a simple studio and
3 shows my studio's scheme. I begin with the lynchpin, which actually is a
couple of rungs down on the signal chain.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f1.large.jpg

Figure 1. Basic Recording Signal Flow for a Simple Project

Figure 2. A Simple One-Way Signal Flow in the Studio

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f3.large.jpg

Figure 3. The Author's Studio

 Analog-to-Digital Conversion

The key to digital recording is analog-to-digital and digital-to-analog converters
(ADCs and DACs). In other words, you need to get sound in to and out of your
computer. In both directions, you have some decisions to make.

ADC must be done in order to record. This happens in the sound card, in a
digital mixer or in a standalone ADC.

Getting sound out (DAC) consists of two parts, listening (or monitoring—more
on that below) and mixing. When mixing, you might never convert back to
analog. You might mix digitally inside or outside the computer, saving a mix as
a .wav file or transferring digitally to a digital recorder. The thing to understand
here is that at some point before you can hear it, a DAC must happen. If you've
done everything digitally, make a CD and play it in your car, that's where the
DAC has happened.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f3.large.jpg

 The Mixer: Analog, Digital or Software?

As you can imagine, your choices are endless. You conceivably could choose
any combination, such as converting analog to digital with the sound card while
converting digital to analog outside, or vice versa. It's a bit easier, though, to
pick one place to do all your conversions, either in the sound card or
somewhere else. If you simplify it this way, your decision comes down to
whether to have an external mixer.

In the simplest configuration, say if you were using a consumer sound card with
only one stereo output, you'd mix entirely in the computer and not think much
about the ADC and DAC being done in the sound card. You would then have no
external mixer (see the Preamps section below).

If you do have an external mixer, you're either using an analog mixer or a
digital mixer. In either case, you need a professional sound card that can
separate channels, as opposed to a consumer card that outputs only one
stereo mix, requiring you to mix inside the computer.

If using an analog mixer, your DAC and ADC happen in your sound card.
Therefore, you need a sound card or sound card/breakout box that has analog
inputs and outputs, such as RME's PCI cardbus and Multiface combination card.
There is a nice primer on this card on the LJ Web site (see the on-line
Resources).

If you choose a digital mixer, your DAC and ADC happens in the mixer itself.
You therefore need a sound card that has digital inputs and outputs that are
compatible with your mixer. In my case, this is RME's HDSP 9652.

Many digital mixers have built-in effects and processing, including reverb,
compression and noise gates, as do many software packages. Few analog
mixers offer such features, so if you're doing traditional analog mixing, you
might spend more on outboard effects and processing. There still are plenty of
reasons to use these tools if you've got the money, but on a budget, I
recommend a digital mixer.

A few questions to ask about potential sound cards:

• Is it noisy?
• Does it have the ability to record while playing back (duplex mode)?
• How many channels can it play back at once?
• How many channels can it record at once?
• What kind of physical I/O ports does it have?
• Does it have built-in MIDI?

• Is there a Linux driver for it?

A great place to answer the last question is the ALSA Sound Card Matrix (see
Resources).

 Microphones

If you're recording acoustic sources, such as voice or drums, you need
microphones. Your budget and what you're recording influence your decisions
here. For example, if you have a medium to large budget and need to record an
acoustic guitar and singer, I might recommend two AKG 414s (about $1,000 US
each). If you need to record pristine vocal tracks and have a large budget, I
might recommend one Neumann U87 (about $3,000 US). Or, maybe you have a
small budget but still need to record vocals and an electric guitar amp. Then I
might go with a pair of Shure SM58s, about $100 US each. Of course, if you
never record acoustic sources and only use synths plugged in directly, you
don't need microphones or preamps.

 Preamps

The signal from a microphone needs to be amplified before it is loud enough to
record or broadcast properly. If you plug a computer microphone in to the
microphone input of a consumer sound card, you're using a preamp, and you
should get a loud enough signal. If you try plugging in to the line input, you
barely get anything. Professional sound cards don't have 1/8" microphone
inputs and assume you have outboard preamps.

The question is whether to use standalone preamps or the preamps built into a
mixer. For most, the preamps in almost any mixer are sufficient. The only
reasons not to use the mixer's preamps are if you don't have a mixer, you need
more at once than your mixer has or you have aesthetic reasons to use a
standalone.

The need for preamps is a good case for having an external mixer, because
having a professional sound card with multiple analog inputs, no mixer and a
bunch of outboard preamps usually is more costly and less flexible than having
a mixer.

 Monitoring

To listen, you can use anything you please, from computer speakers to
headphones to a home stereo speaker/amp combination to studio reference
monitors. There is, however, a distinction between speakers and monitors. A
speaker is designed to enhance the sound of a recording, and a monitor is

designed to give an accurate, uncolored representation. If you want to do
accurate work, you need monitors.

Studio monitors come in a variety of flavors. The major thing you need to know
is whether a set is powered. If it isn't, you need a power amp, just as if you were
using a set of home stereo speakers. Replacing your regular speakers with
studio monitors and connecting to your existing amp is easy.

 Digital Recorder

The Linux box is your digital recorder. The decision to make here concerns
software. Literally hundreds of open-source audio applications are available for
Linux, from hard-disk recorders to MIDI sequencers to MP3 encoders. I don't
have room to talk about them all, so I focus on my main studio tool, Ardour.
(See the Where to Start section of the Resources page on the Web for more
information on finding software.)

You can Google your way to most software, but there are some great package
resources out there. I'm on Red Hat, so I use Planet CCRMA. The Planet is a
project at Stanford's Center for Computer Research in Music and Acoustics,
maintained by a knowledgeable guy named Fernando. Not only does Nando
maintain Red Hat RPMs of most audio and video applications, drivers, utilities
and even custom kernels, he has an extensive guide for installing kernels, ALSA
sound drivers and software, as well as for tweaking your machine's
performance. I highly recommend reading through the Planet, even if you're
not using Red Hat. There are other similar resources for different distributions.

To quote the Ardour home page, “Ardour is a multichannel hard-disk recorder
(HDR) and digital audio workstation (DAW). It is capable of simultaneous
recording of 24 or more channels of 32-bit audio at 48KHz....” Ardour needs a
2.4 or later low-latency kernel, 0.9 series or later ALSA sound drivers and JACK
(Jack Audio Connection Kit). It also needs a window manager because it doesn't
run from the command line like many other Linux audio applications. I run
Ardour from Fluxbox and sometimes KDE, but most managers should work.

Ardour should be fine with any sound card supported by ALSA. Part of why I
use the HDSP is because Ardour was written with RME's cards in mind. Ardour
looks and acts a lot like Pro Tools from Digidesign.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f4.large.jpg

Figure 4. The Ardour Edit Window

Starting Ardour is a matter of starting JACK and then starting Ardour while JACK
runs. It's best to run these as the superuser, because only root is allowed to
invoke real-time priority. A generic start command for JACK would be:

jackd -d alsa -d hw:0

This starts the JACK server using ALSA as its device, and the default sound card
as ALSA's device. See the JACK User Documentation to learn more about
command-line options for JACK.

Like Pro Tools, Ardour is very powerful. You can create as many audio tracks as
your hardware can handle, record tracks, mix internally, apply plugins and
route them any way you and your sound card can imagine. A typical session for
me might see 20 Ardour tracks routed to 20 separate card outputs, and eight
more tracks submixed within Ardour and sent to two more channels of output,
all mixed on my digital mixer. It's relatively easy to do this. I simply click on the
Out button, toward the bottom of each track in the mix window (Figure 5), and
choose an output channel from a pop-up list.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f5.large.jpg

Figure 5. The Ardour mix window lets you select the input, output and level for each channel.

Another option is mixing totally within Ardour and exporting the session as a
.wav file. The mix window has graphical faders, exactly like Pro Tools, as well as
plugins and automation. Automation is as simple as clicking arec, moving your
settings, then unclicking arec and clicking aplay to play back the automation.

As you can see, using Ardour is as straightforward as any professional DAW,
which isn't totally straightforward, but it doesn't take long to learn. Because it's
in beta, the manual is forthcoming, although a read through the Pro Tools
manual should provide a good idea of how it works. There also are some good
HOWTOs on-line (see Resources). At the time of this writing, Ardour is at
0.9beta8-1. It's important to keep this in mind, save often and don't be alarmed
by the occasional crash. You can help get it to version 1 by reporting bugs (see
Resources).

 Space

Studios consist of some combination of control room, recording space and
isolation rooms. If you've got the space, you can have all of them; if not, you
may be limited to only your control room. Figure 6 is a typical studio floor plan;
Figure 7 is my studio's floor plan.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f6.large.jpg

Figure 6. A typical studio floor plan includes isolation (ISO) booths separate from the main
recording space, but it can be simpler.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f7.large.jpg

Figure 7. The Author's Super-Fabulous, Ultra-Creative Studio Floor Plan

Some people get expensive rigs, put them in an office and call it a professional
studio, which is far from the truth. The best thing you can do to improve your
recordings, better than buying $5,000 US microphones, better even than 77-
string custom guitars made by Beelzebub himself, is improve your studio's
acoustics. There are two areas to consider, recording space and listening
environment. It's easy to be off the mark with your recording space and easier
still to be dead wrong in your listening space.

You should find some information about bass traps, no parallel surface rule,
diffusion, absorption, isolation, flutter echo, reverb times and the like on the
Resources page on the Web. Then you can start deciding things like where to
place furniture and acoustic material, finding a good room that's not a hallway
next to a jackhammer and so on.

 Practice

Good studio practice is more than a computer and its fancy open-source
applications. For example, don't forget to take tracks outside of the computer's
domain. You may want to use a tube preamp, a classic reverb or an outboard
compressor. Experiment, don't be afraid to fuse the old with the new and admit
when your software isn't giving you what you really want. A drum machine
never can replace a drummer.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7205f7.large.jpg

You also want to be wise about your cabling and general studio maintenance.
Keep audio cables away from AC cables, cross them only at right angles when
absolutely necessary and keep your connections clean. See the Resources page
on the Web for some general recording information that should be helpful.

There you have it, the fusion of computer geek and recording nerd. You're now
a few steps closer to your Linux-based studio. When you need help, check out
the Mailing Lists on the Resources page. Good luck, and raise your glass to
some ingenious open-source records appearing in stores everywhere.

Resources for this article: /article/7457.

Aaron Trumm started recording pause loop tape hip-hop at 14. He has since
released seven albums and countless side projects. He created and still owns
NQuit Records, and he formed the Techno/Classical/Poetry Project Third
Option, which includes his classical piano improvisation and poems, as well as
poetry from Tamara Nicholl, who was the first ever female Albuquerque City
Poetry Slam Champion. Aaron was also the tenth-ranked slam poet in the US in
2002 and has competed at the National Poetry Slam four times.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7457.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Using SQL-Ledger for Your Business

David A. Bandel

Issue #121, May 2004

If you're keeping a proprietary OS around just to run the accounting software,
you're missing a chance to step up to the flexible, better-supported alternative.

Back in the late 1990s, I started looking for a good accounting software package
for Linux. I was disappointed by all the offerings I found; none was up to snuff
or even looked like it might ever be. Then, about three and a half years ago, I
stumbled on SQL-Ledger (SL) written by Dieter Simader (see the “Making Open
Source Work” sidebar).

Making Open Source Work

Dieter Simader is the author of SQL-Ledger. He started the project four years
ago. His software has taken off since then, and he now works on SL full-time.
He's made his open-source project, released under the GPL with no cost to
others to use, his primary source of income.

So how does one make a living off free software? If you visit the SL site, you can
see that Dieter offers support contracts, which are all reasonably priced. His
software is of high quality, and his offerings include data conversion, pay-as-
you-play support and support for the development version if you need the
more advanced features. He also sells the software manual that tells you not
only how to use his program but how to customize screens for all users or for
certain users, using SL's API.

These value-added features are well worth the price and should be considered
essential for any business. Although businesses can hire someone else to do
what Dieter does, including supporting the software, customizing templates
and importing data, few could do the work as well as Dieter.

As a consultant, my clients usually want to deal with me, not someone on
another continent whom they don't know. For that convenience, they are

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

willing to pay a premium. So I tack a small percentage on to Dieter's price, pay
Dieter and we're both happy. He gets work and is paid for supporting his
program. I get an annoyance fee, because my clients will annoy me if the
software doesn't work to their satisfaction. This model also serves as a good
way to expand into markets where the author doesn't speak the language, so
additional revenue also serves as a translation fee. SQL-Ledger is proof that
open-source business models can work.

To be honest, at first glance I thought SQL-Ledger wasn't yet an offering for a
serious business. It lacked point of sale (POS), payroll and a number of other
features. But, based on its ease of installation, its flexibility and a number of
other factors, not the least of which was the author's rather ambitious to-do
list, I tried it out.

I used SQL-Ledger for my IT consulting business, Pananix, SA, and it proved to
be more than adequate. I could input customers and vendors, create invoices
and orders, and print basic reports, including trial balance, income statement
and balance sheet. SL even had rudimentary support for goods and services
reports covering product inventory and services.

Because I currently live in a Spanish-speaking country, I anticipated problems.
I'm not familiar with Spanish accounting terms, but the laws of this country
require that the program interface and all statements and reports be in
Spanish for the natives and tax auditors. Fortunately, SL is written in such a way
that users can choose the language they require. That means I can see
everything in English, while my accountant and the local tax authorities see
Spanish—perfectly legal. If a language doesn't exist, it can be added easily. This
feature was not well supported in any other accounting package I looked at and
was a major factor for me in choosing SL.

 Installation

Installation was a breeze back when I first looked at SL, but it's even easier now.
The biggest stumbling block for most people involves the few requisite Perl
modules for database support. A second stumbling block comes with the
configuration of PostgreSQL itself, but all these are covered in the instructions
and FAQ. As long as they are followed to the letter, even newbies shouldn't
have any difficulty. The problems seem to arise when folks wander off on their
own and deliberately or accidentally make changes affecting permissions,
occasionally permissions on the database itself.

Once Perl and whatever supported database you want to use are set up, the
rest is easy. MySQL is not supported and will be only when it provides certain
parts of the SQL-92 standard it is now missing. PostgreSQL is the database
used for design and testing, but Oracle and DB2 also work.

You also need to configure your Web server of choice to access SL, but that
involves only copying a few lines to httpd.conf and restarting it. If you install SL
under your DocumentRoot, even this step can be omitted, as long as you can
run CGI scripts from below your DocumentRoot. If you want to print reports to
disk as PDF files, you need to make sure you have LaTeX installed.

The currently recommended installation practice for SL itself is to use the
author's supplied setup.pl file to handle everything for you. This makes it
difficult to go wrong, and the script also is used to upgrade SL. The author
recently included code to test the database itself during upgrades to ensure
you don't have version mismatches between the database and the code. If you
do, it automatically upgrades it (nice touch, that).

 Configuration and Security

Those of you who follow my writings know that I consider security to be job
number one. Accountants out there should be pleased to know that security in
SL can be implemented on a user-by-user basis. Therefore, one user can see
only Accounts Payable while another can see only Accounts Receivable.

SL also can be configured to comply with generally accepted accounting
principles (GAAP). Most countries have their own version of GAAP, but these
practices are similar. You therefore can configure SL so users can't go back and
delete transactions but must post reversing entries instead. You also can close
periods so nothing can be edited in prior periods.

All this is accomplished in the administration section where you add users and
basically tell the system how you want it to act. After that, it's up to you. The
FAQ contains information to assist you in tightening security on your system.
Basically, you decide how secure or open your system will be.

 Running SQL-Ledger

SL is easy to use and fairly simple to customize in any way you need. Everything
in SL revolves around its Chart of Accounts. When you set up SL, you choose
one to load. But making changes to that one or even creating a new one is not
difficult. In fact, many businesses probably will want to sit down and make
some modifications.

The way SL's tax system is set up, almost any tax system can be configured
easily, simply by linking from one table to another using the tax percentage.
The ease with which this can be done makes it ideal for locations where the tax
structure might require two or three separate taxes be applied to a sale. The
Default Chart of Accounts is set up with three tax accounts just to show how it
is done. Tax tables contain multiple links to customers, vendors, parts and

services, and a match determines whether tax is applied or not. AR and AP are
independent from one another, and in combination with tax settings for
customers, vendors' parts and service, you have a very flexible model to
calculate tax. You even can set up negative taxes to calculate tax withholdings
at source or tax on tax. The tax system here requires that I charge taxes on
services tied to the sale of a taxable item; otherwise, I don't charge tax on
purely a service offering. So I had to create a service call that was nontaxable
and one that was taxable.

So that customers don't notice that I sometimes charge tax on a service but
other times I don't, and because the taxable service always was tied to a
hardware sale, I simply created an installation package that included the
hardware and taxable service with the entire bundle being taxed. I haven't seen
a single other accounting package for Linux that offers me this kind of
flexibility.

SL can be accessed from any system with a Web browser, text or graphical,
from anywhere you can reach the SL server by HTTP or HTTPS. If, like most
people, you're using a graphical browser, after login you see two frames. The
one on the left contains a menu broken down into several sections with items
below them, and the one on the right contains a main screen where you can
enter data.

One of the first things I do after each upgrade is cd into the bin/mozilla
directory and edit menu.pl to widen the menubar. For me, it's a little too
narrow, and making it about 35 pixels wider makes it more pleasing to my eyes.
For those of you who use a text browser, like Lynx, that doesn't render frames,
the menu headings are at the bottom of the page.

The major headings that show up depend on the user's configuration from the
admin page. Entire menu headings can be removed or only specific items. So
any given user's menubar may look a bit sparser than that shown in the screen
captures, depending on setup and version in use. The screenshot in Figure 1
clearly shows this is Version 2.3.1, a development version. It is slightly more
feature-rich than the stable version, but its designation as unstable warns you it
hasn't been as thoroughly tested as the stable version. Major menu headings
include AR, POS, AP, Cash, HR, Order Entry, Shipping, Quotations, General
Ledger, Goods & Services, Projects and Reports.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f1.large.jpg

Figure 1. SQL-Ledger Start Page

You also can see some menu items followed by ellipses. Those bring up even
more detailed submenu items. In the case of System..., a long list is brought up
in later versions.

Taking a quick look at AR Reports, selecting Reports expands the menu list.
Then selecting Transactions provides a screen to define the transactions we
want to see and the information we want presented; see Figure 2.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f2.large.jpg

Figure 2. AR Transactions Query Screen

Notice the Customer window at the top of the browser window in Figure 2. In a
number of screens, this can be either a drop-down list or a pick list in a
separate window. Better yet, this presentation is configurable by each user. So
users who like drop-down lists and don't mind that the list scrolls 16 pages off
the bottom of the screen can put a large number in their pick-list preference.
Those that want a smaller, more sane list, can get a drop-down list unless the
number of available items for the drop-down list exceeds the limit. Then, they
simply can put in a few letters of the name for which they're searching, refresh
the screen and get a small pick list, as shown in Figure 3. This particular pick list
came up from an invoice screen after entering maint in the part number
window and selecting Update.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f3.large.jpg

Figure 3. Sample Pick-List Screen

For those of you interested in playing with SL without going to the trouble of
setting it up, I suggest you head over to www.sql-ledger.com. A few demo
systems are available, so folks can try before they install the software.

 Using SQL-Ledger in Your Business

I'm not an accountant, and I barely get by with my accounting duties as it is. As
with most powerful accounting software, you should know something about it
before using it. But if it's an accounting question, I probably don't have the
answer.

Fortunately, except for the few times I may have to wade into general ledger,
the system takes care of itself. I've found the customer list to be quite friendly.
It serves as both a customer list and a way to keep e-mail addresses straight. I
e-mail monthly bills, and this program has made that particularly easy. In fact,
after posting, you can call up a bill and e-mail it with a single click. The program
handles it all for you, including sending a cover letter.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7290f3.large.jpg
http://www.sql-ledger.com

Purchase orders are as easy to do, and they also can be e-mailed directly from
the interface. When orders come in it's a few more clicks to enter inventory and
create the payable. A quick trip to Cash→Payments and we're done.

If you have several businesses, you can run as many ledgers as you want using
different database names. You also have to use different user names, one for
each, but I've found the easy way to do this is to make the user name a
combined user/company name. You may think of something more convenient.

Now that the latest SL includes POS, you can connect a bar-code reader and
use that to enter items on the screen. SL was designed deliberately with the
UPDATE button first, so scanning a bar code fills in a product number then
updates that to fill in the rest of the line.

 Coming Attractions?

SL is now fairly feature-rich these days, especially compared to several years
ago, but the author maintains an ambitious to-do list. By the time you read this,
in fact, SL even may contain payroll. Most of the tables and links are in place; it
appears to be a matter of coding and testing. I fully expect a payroll system to
rival any available, based on what's come before in SL.

The SL to-do list includes such items as:

• Budgets: comparisons to actual ones and also to enforce budget
(expense) constraints.

• Manufacturing: finished goods and goods-in-process inventory; material
and human resources planning.

• Lot allocation: repackaging bulk goods into smaller portions; memorized
transactions and custom reports.

• Batch form generation: invoices, orders and other forms for batch
printing.

• Financial reports: more comparison options, such as month-to-month.

Those interested can take a look at SL's What's Ahead page.

 Support

SL offers a range of support for the software. From the SL home page you can
find several users lists in a variety of languages. Currently six user lists exist.
The author lurks on the English list. He occasionally posts to clear up
misunderstandings.

Paid support also is available at extremely reasonable rates. A wide variety of
support options are available, and most come with a copy of the SQL-Ledger
users manual. If you want to use this software without support, that's fine. But
as with all GPL software, if you break it, you get to keep both pieces. Paid
support is your assurance it doesn't break. A support option is available to
import old data from accounting packages that can export tab-delimited text
files.

 Conclusion

Although changing accounting packages always is an ordeal, SL is one package
worth investigating. The price can't be beat, and this software competes against
and beats many proprietary offerings. And if you don't see it but need it, you
always can request a feature.

David A. Bandel (david@pananix.com) is a Linux/UNIX/Network (both wired and
wireless) consultant in Panama who dabbles in almost all aspects of
telecommunications. He's authored or coauthored three Linux books, runs two
HF radio Sailmail stations and does volunteer work for the Linux Professional
Institute. When not working, he can be found relaxing on his farm near the
Costa Rican border.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Automating Tasks with Aap

Bram Moolenaar

Issue #121, May 2004

Aap is a flexible tool that can do what make does and much more. Learn how to
write portable recipes for maintaining your Web sites and building programs.

Many people use a Makefile and shell scripts to automate tasks where a change
to a file requires an action to be taken. You edit a file and then invoke make in
the hope that all actions necessary to effect the changes are done. Often you
need to tweak the Makefile to get it right and end up using touch to work
around a missing dependency. As a result, when other people look at your
carefully tuned Makefile, they have a hard time understanding how it works.

These tasks can be done more easily and reliably with Aap than with make. For
example, Aap has built-in Internet support. Downloading and uploading is
taken care of without the need to specify the commands or to keep timestamp
files. Reliability is achieved by figuring out dependencies automatically and
using signatures instead of timestamps. With Aap it is simpler to specify the
work you want done, and you make fewer mistakes. You still can fall back on
using shell commands where you want them. This article presents two
examples of Aap in action, maintaining a Web site and building a program. Aap
can do much more, of course, but these subjects should be sufficient to get you
started.

 Installing Aap

To use Aap you need Python version 1.5 or later. In the unlikely event that you
do not have Python on your system, download it from Python.org, or install it
from your Linux distribution CD or update system.

Installing Aap can be done in four simple steps. Start by downloading the latest
Aap zip archive (see the on-line Resources section). Then, unpack the archive in
a temporary directory (unzip aap-1.053.zip). If you are root, run ./aap
install. If you are a normal user, install the archive in your home directory

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

with ./aap install PREFIX=$HOME. For more information about
downloading and installing Aap, see Resources. Aap is distributed as open-
source software under the GNU GPL.

 Maintaining a Web Site

With the current Aap software in place, let's look at using it in a basic example
task. You have designed a simple Web site with HTML files and images. The files
are on your local computer, and you need to upload them to the Web server.
Listing 1 shows the Aap script, called a recipe, that does this.

Listing 1. Recipe for Uploading Files to a Web Server

The list of files to be uploaded.
Files = index.html
 info.html
 download.html
 images/*.png

The publish attribute tells where to upload to.
:attr {publish = scp://my.server.net/html/%file%}
 $Files

When executed without a target: publish the files.
all : publish

Store the recipe under the name main.aap. This file is what Makefile is to make

—the default file to be executed. Running aap without arguments executes the
main.aap recipe in the current directory.

Comments in an Aap recipe start with # and continue until the end of the line,
as in a Makefile or shell script. The first effective line in the recipe is an
assignment; the list of files to be uploaded is assigned to the Files variable.
There are no back slashes nor punctuation to mark the end of the assignment.
Aap recognizes command continuation by the amount of indentation used. This
may appear strange at first, but you quickly get used to it. This method avoids
the usual mistakes with punctuation and enforces a layout that is easy to read.
Aap allows you to use either tabs or spaces to indent lines.

The :attr line is an Aap command. All Aap commands start with a colon to make
them easy to recognize. This command adds the publish attribute to its
arguments. The publish attribute tells Aap where to upload the files when they
are published. The method used here is scp://, secure copy. Other supported
methods are rsync:// and ftp://. The last argument of :attr is $Files, the value of
the Files variable. The attribute is attached to each item in $Files.

When you run Aap without an argument, it updates the target all. The final line
specifies that the default target all depends on publish. This is a special target,
which tells Aap to upload all items that have a publish attribute.

You now can edit the HTML files, add pictures and view them locally. Once you
are satisfied, execute aap. Aap figures out which files have changed and
uploads them. Signatures (checksums) are used; thus, if you restore an old
version of a file it still works properly. If you were using make, you would have
to touch the restored file to update its timestamp.

If you want to try this example, but you don't have a server to upload to, you
can use the publish attribute file:/tmp/html/%file%. With it, Aap creates
the /tmp/html directory, if necessary.

A word of warning: Aap does not delete files on the server no longer in use.
Then again, neither does make. You have to delete these files manually.
Hopefully, automatic deletion will be added to Aap soon.

 Listing the Image Files

A wild card was used to select the images: images/*.png. This is convenient,
but it has the danger of including images you do not want uploaded. Explicitly
naming each file avoids this trap, but then you might forget an image. Being
that this is a common issue, Aap provides a function to extract the image
filenames from the HTML files. Listing 2 shows how this is done; the Python
function get_html_images is invoked, and the back ticks enclose a Python
expression. Aap evaluates the expression and puts the result, the image
filenames, in its place. The get_html_images() function has limited capabilities,
however. It works only for plain HTML files with images that have a relative
pathname.

Listing 2. Getting the Image Filenames from HTML Files

The list of files to be uploaded.
Files = index.html
 info.html
 download.html
Files += `get_html_images(Files)`

The publish attribute tells where to upload to.
:attr {publish = scp://my.server.net/html/%file%}
 $Files

When executed without a target: publish the files.
all : publish

 Generating HTML Files

Most HTML files consist of a header, title, main contents and footer. Obviously,
you don't want to type the common parts each time. A simple solution is to
concatenate a number of files. Listing 3 shows the recipe that implements this.
Five parts are used: header, title, middle, contents and footer. The title and
contents are different for each page, but the other three parts are the same.

Listing 3. Generating an HTML File from Five Parts

Files = index.html
 info.html
 download.html

:rule %.html : header.part
 %_title.part
 middle.part
 %.part
 footer.part
 :cat $source >! $target

:update $Files
Files += `get_html_images(Files)`

:attr {publish = scp://my.server.net/html/%file%}
 $Files

all : publish

The main difference between Listing 2 and Listing 3 is the added :rule
command in Listing 3. It specifies that a target (the HTML file) depends on five
source files (the parts) and lists the command to build the target from the
sources. The % character is used instead of the name of the file, similar to a *
wild card. All % characters in the rule stand for the same name. Thus, for
index.html the % stands for index. The sources then include index_title.part and
index.part.

Below the :rule line comes the indented block of statements that are executed
when the target of the rule needs to be updated. So, the recipe has two levels:
the commands at the top level are executed when reading the recipe, and the
command block of the rule is executed later, when needed.

The :cat command concatenates files, the same as the UNIX cat command. It
actually can do much more, such as read files from a specified URL. In a rule,
$source stands for the whole list of source files.

The HTML files need to be generated before obtaining the list of image files
they contain. To get this right, the :update command is invoked before calling
get_html_images(). The HTML files are updated using the defined rule. This is at
the top level of the recipe, so it always is done when Aap reads the recipe.

Now that you have so many files, how does Aap keep track of what needs to be
done? Aap works with dependencies, the same as make does. It starts with the
target you specify on the command line. When no target is given, all is
assumed. Aap then locates those dependencies and rules in which this target
appears before the colon. The colon basically means depends on; after the
colon are the source files on which the target depends. Each of these source
files then is inspected, and Aap finds rules where they appear as a target. This
continues recursively until no more rules are found. The result is a tree of
dependencies. Aap then executes commands for those dependencies that need

to be built, starting at the end of the tree (depth first). This sounds complicated,
doesn't it? Because Aap takes care of this, you only need to make sure you
specify the sources on which each target depends. Aap figures out what needs
to be done.

 Adding a Timestamp

As a nice addition, let's add a timestamp to the HTML file, so you can see on the
Web site when the page was last generated. Put the string @TIMESTAMP@
somewhere in the file footer.part. Listing 4 shows the rule in which this string is
replaced with the current date. The rest of the recipe is as shown in Listing 3.
The :eval command evaluates a Python expression, and string.replace is a
standard Python function for replacing one string with another. This way, you
can use any Python expression to filter text. The HTML page is piped through
the :eval command, as with a shell.

Listing 4. Rule for Putting a Timestamp in a Generated HTML File

:rule %.html : header.part
 %_title.part
 middle.part
 %.part
 footer.part
 :print Generating $-target
 :cat $source
 | :eval string.replace(stdin,
 '@TIMESTAMP@', _no.DATESTR)
 >! $target

The first time the new rule is used, all HTML files are updated. That is because
Aap remembers a signature for the commands. Thus, you don't need to worry
about forcefully generating the files after changing the commands in the recipe.

 Uploading with rsync

When making small changes to a Web page, it is a waste of bandwidth to
upload the whole file each time. A good way to upload efficiently is to use rsync.
It uploads only those parts of a file that have been changed. Aap uses rsync
when it finds rsync:// in the publish attribute. By default, rsync is used over an
SSH connection. You can change this by setting the $RSYNC variable.

rsync is not a standard command. If it does not exist on the system, you
encounter a nice feature of Aap—you are offered the choice to install rsync:

% aap
Aap: Uploading ['index.html'] to
 rsync://my.server.net/html/index.html
Cannot find package "rsync"!
1. Let Aap attempt installing the package
2. Retry (install it yourself first)
q. Quit
Choice:

Aap has a mechanism to install a package when it is needed by downloading a
recipe from the Aap Web site that specifies how the package is to be installed.
The downloading features of Aap come in handy here. How the package is
installed depends on your system; not all systems are supported yet. After
rsync has been installed, Aap starts uploading the files.

 Building a Program

Aap includes support for building a program from C and C++ code. Here is the
one-line recipe that builds the program called myprog from four C source files:

:program myprog : main.c common.c various.c args.c

Despite the simplicity of the recipe, Aap takes care of several issues:

• Dependencies are figured out automatically. You don't need to specify the
included header files or do a make depend.

• This recipe works on most systems without modification. Aap finds a
compiler and linker to use and figures out the arguments they need.

• The object files are stored in a separate build directory for each system.
You can build several versions without cleaning up.

• Aap creates a log file, AAPDIR/log, that contains details about what
happened. If your build fails and the output scrolls off the screen, you
don't need to repeat the build command with the output redirected.

• A few default targets are added automatically: aap install installs the
program, and aap clean deletes generated files.

It would be possible to do the same work with make, with the help of a few
extra tools. But the Makefile would be much longer and not portable; it also
would require more effort to maintain.

 Building Variants

Now let's build a program in two variants, a release and a debug version. Aap
includes support for variants. All you need to do is specify what variants you
want to build and what is different between them. Listing 5 shows the recipe.

Listing 5. Building Release and Debug Variants

:variant Build
 release
 OPTIMIZE = 4
 Target = myprog
 debug
 DEBUG = yes
 Target = myprogd

:program $Target : main.c common.c various.c args.c

The first line of the :variant command specifies the variable name used to
select the variant to be built. You can set this variable on the command line;
aap Build=debug builds the debug version. Without an argument, the
release variant is built, because it is mentioned first.

The amount of indentation identifies the other parts of the :variant command.
The possible values have less indentation; the commands used for each value
have a bit more. You are forced to align the parts, which makes them easier to
read.

The release variant sets the OPTIMIZE variable. This is a number in the range of
zero to nine that indicates the amount of optimizing to be done. It
automatically is turned into the right argument for the compiler being used.
The debug variant sets DEBUG to yes. The default value is no. The Target
variable holds the name of the resulting program. The two variants use a
different name, so both programs can exist.

A nice advantage of using variants this way is that object files for each variant
are stored automatically in a separate build directory. When switching between
the two variants you should notice that Aap does not rebuild all the files.

 Building with Another Language

For languages other than C and C++ you need to import a language module. A
few standard modules are included with Aap. For example, this is how to build
from D sources; D is a new programming language:

:import d
:program myprog : main.d common.d various.d args.d

The :import d command is used to load the support for the D language.
Otherwise this process is similar to building from C sources.

You can write a module yourself to add support for a language. Because Aap is
open source, you are encouraged to submit the module to be included in the
Aap distribution. Until that happens, drop the file in the Aap modules directory;
this works as a plugin.

 Building a KDE Application

Building a KDE application involves working with a lot of tools, including using
Qt Designer to create dialogs, generating header files from user-interface
descriptions and generating interprocess communication code. Nevertheless, a
recipe for building a KDE application can be as simple as this:

:import kde
:program logger : main.cpp
 logwidget.ui
 dcop.h {filetype = skel}
 {var_OBJSUF = _skel.o}

Of the three input files, main.cpp can be compiled directly. The Qt Designer file
logwidget.ui first needs to be processed by uic to generate an include file; then
moc must be used. Aap recognizes the .ui suffix and takes care of all of this.
Handling this kind of multistep compilation, from ui to h to moc to object file, is
a useful feature in Aap. Doing the same thing in a Makefile requires far more
explicit rules.

The dcop.h file contains special KDE items but has a normal suffix. It cannot be
recognized automatically. Therefore the filetype attribute is specified explicitly.
The :program command also needs to know the name of the object file, which
is specified with the var_OBJSUF attribute. You do not need to specify explicitly
the KDE tools being used; the complexity is hidden in the KDE module. This is
considerably less complex than using automake.

 Using Aap as a Better make

So far, you have used high-level Aap commands to specify quickly what needs
to be done. For nonstandard tasks, you need to spell out the dependencies and
commands. This mostly works like a Makefile. Besides shell commands, you can
use portable Aap commands. If that is not enough, you can add a Python script.

Listing 6 shows what a low-level recipe looks like. Every dependency is given
explicitly here—all depends on hello, hello is compiled from hello.c and hello.c
is generated from scratch.

Listing 6. Using Aap as a make Replacement

all : hello

Manually compile the hello program.
hello : hello.c
 :sys cc -o $target $source

Clumsy way to generate a C program.
hello.c:
 :print Generating $target
 :print >! $target $(#)include $(<)stdio.h$(>)
 :print >> $target main() {
 :print >> $target printf("Hello World!\n");
 :print >> $target return 0;
 :print >> $target }

Because the build commands in a recipe are Aap commands, you need to use
:sys to execute a shell (system) command. In the example, :sys cc executes

the C compiler. Obviously, this works only on systems with the cc command.
Using shell commands reduces the portability of a recipe.

The hello.c file is generated with :print commands. The first line uses >!
$target to overwrite an existing hello.c file. Without the exclamation mark,
you receive an error message if the file already exists. This line also contains $
(#), which escapes the special meaning of the # character to start a comment.
Likewise, $(<) and $(>) are used to get < and > characters instead of redirection.

The hello.c file is generated when it doesn't already exist; no source file
dependency is specified. The file can be generated in another situation as well
—if you change one of the :print commands, because it changes the signature
of the build commands. When the build commands change, Aap knows that the
target must be rebuilt.

The file is generated with Aap commands; no shell commands need to be used.
This part of the recipe therefore can work on any system. But the number of
Aap commands is limited. When you need more functionality and also require
portability, you can use Python scripting.

All flow control in Aap recipes is done with Python, and Listing 7 illustrates an
example of a recipe that applies patches to Vim. A loop is used to generate a list
of patch filenames, starting with vim-6.2.001 and counting up to the last patch
number, specified with LASTPATCH. Each of the patch files is to be downloaded
and applied. The $* in done/$*Patches is used for rc-style variable expansion;
done/ is prepended to every item in Patches.

Listing 7. Using Python to Create a List of Names

LASTPATCH = 144

Generate a list of patch filenames.
@Patches = ''
@for i in range(1, int(LASTPATCH) + 1):
@ Patches = Patches + ("6.2.%03d " % i)

Default target: apply all patches.
all: done/$*Patches

Make sure the two directories exist.
:mkdir {force} patches done

Rule for applying a patch.
:rule done/% : patches/% {fetch =
 ftp://ftp.vim.org/pub/vim/%file%}
 :sys patch < $source
 :touch $target

Normally, you don't need to use much Python in your recipe, but it is good to
know that complicated tasks are possible to accomplish when they arise.

 Installing Packages

We already mentioned that Aap can install rsync for you if it cannot be found
on your system. The package install mechanism also can be invoked directly.
For example, to install Agide use the command aap --install agide.
Agide is the A-A-P GUI IDE, another part of the A-A-P Project. You can use it to
build and debug programs with Vim and gdb. It still is in an early stage of
development, but it is good enough to develop and debug C programs.

Several packages currently are available, and more will be added over time. A
list of the current packages can be found on www.a-a-p.org/packages.html. Aap
itself also can be installed. Updating to the latest version can be done with aap
--install aap. This command overwrites any existing Aap version. If your
system has a package manager, you probably should use that instead.

 Conclusion

You now have an idea of the tasks that you can automate with Aap. When you
start experimenting you can find a lot of help in the comprehensive
documentation. You can find it on the Aap Web site in several forms (see
Resources). These pages explain many things that could not be included in this
article, such as using CVS for version control, automatic configuration and so
on.

Resources for this article: /article/7458.

Bram Moolenaar is the project leader and main author of Aap. He is known
mostly for his work on Vim, the text editor. Bram's work on Aap was funded by
Stichting NLnet www.NLnet.nl. You can find his home page at
www.Moolenaar.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.a-a-p.org/packages.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/7458.html
http://www.NLnet.nl
http://www.Moolenaar.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 How to Build LSB Applications

Stuart R. Anderson

Issue #121, May 2004

Don't leave your Linux software stuck on one distribution. Make it run
anywhere with the standard that all the major distributions use.

The Linux Standard Base (LSB) specifies an interface between an application
and a runtime environment. Many distributions have achieved certification for
their runtime environments. This article outlines the steps needed to build
applications that adhere to the LSB interface.

 Origins of the LSB

The LSB Project was founded in 1997 to address the application compatibility
problem that was beginning to emerge. Different distributions were using
different versions of upstream software and building them with different
options enabled. The result was that an application built on one distribution
might not run on another distribution. Worse yet, the application often would
not work on a different version of the same distribution.

Originally, the LSB was intended to create a common reference implementation
for the base of a GNU/Linux system. In addition to the reference
implementation, a written specification was to be developed. This idea wasn't
well received by many of the distributions that had considerable investments in
their own base software, which they perceived as being a competitive
advantage.

After further discussion among the interested parties, the LSB Project
underwent a fundamental shift in focus in order to achieve consensus among
the entire community. The shift gave priority to the written specification over
the implementation, and it defined the LSB as a behavioral specification instead
of a list of upstream feature/version pairs. This new focus was realized as a
three-prong approach: a written specification, which defines the behavior of
the system; a formal test suite, which measures an implementation against the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

specification; and a sample implementation, which provides an example of the
specification.

 Structure of the LSB

The LSB Specification actually is made up of a generic portion, the gLSB, and an
architecture-specific portion, archLSB. The gLSB contains everything that is
common across all architectures; we try hard to define as much as possible in
the gLSB. The archLSBs contain the things that are unique to each processor
architecture, such as the machine instruction set and C library symbol versions.

 Contents of the LSB

As much as possible, the LSB builds on existing standards, including the Single
UNIX Specification (SUS), which has evolved from POSIX, the System V Interface
Definition (SVID) and the System V Application Binary Interface (ABI). The LSB
uses the ELF definitions from the ABI and the interface behaviors from the SUS.
It adds the formal listing of what interfaces are available in which library as well
as the data structures and constants associated with them. See the “Linux
Standard Base Libraries” sidebar for the list of libraries currently specified.

Linux Standard Base Libraries

As of LSB 1.3, the following shared libraries are specified in the LSB. All other
libraries must be linked statically into the application.

Base libraries: libc, libm, libpthread, libpam, libutil, libdl, libcrypt, libncurses and
libz.

Graphics libraries: libX11, libXt, libXext, libSM, libICE and libGL.

As the LSB continues to grow in future versions, so will this list of libraries.

In addition to the ABI portion of the LSB, the specification also specifies a set of
commands that may be used in scripts associated with the application. It also
mandates that the application adhere to the filesystem hierarchy standard
(FHS).

One additional component of the LSB is the packaging format. The LSB
specifies the package file format to be a subset of the RPM file format. The LSB
does not specify that the distribution has to be based on RPM, however, only
that it has some way of correctly processing a file in the RPM format.

One final item to mention is the name of the program interpreter. The program
interpreter is the first thing executed when an application is started, and it is

responsible for loading the rest of the program and shared libraries into the
process address space. Traditionally, /lib/ld-linux.so.2 has been used, but the
LSB specifies /lib/ld-lsb.so.1 instead on IA32. Generally, /lib/ld-arch-lsb.so.1 is
used for other architectures. This provides the operating system with a hook
early in the process execution in case something special needs to be done to
provide the correct runtime environment to the application. You can pass the
following to GCC to change the program interpreter:

-Wl,--dynamic-linker=/lib/ld-lsb.so.1

The tools described here take care of this process for you.

 The LSB Build Environment

A long time ago, people realized that code changes are cheaper and easier to
make when they come earlier in a development process rather than later. With
this in mind, the LSB Project has created a build environment to assist with the
creation of LSB-conforming applications. This build environment provides a set
of clean headers, stub libraries and a compiler wrapper.

The LSB stores much of its definition in a database. In addition to the portions
of the specification that would be tedious to edit manually, we are able to
produce a set of clean header files and stub libraries that contain only the
things specified by the LSB. Using the database in this way helps to ensure the
tools and specification stay in sync as changes and additions are made. The
packages you need to install are described in the “Linux Standard Base
Packages” sidebar.

Linux Standard Base Packages

You can get the LSB development environment from the Linux Standard Base
(see the on-line Resources section); simply follow the links for downloads. You
should install the following packages:

• lsbdev-base: contains the headers and libraries.
• lsbdev-cc: contains the compiler wrapper tools.
• lsbdev-chroot: contains the alternate chroot-based environment.
• lsbdev-c++: contains a static libstdc++, which can be used to port some C+

+ applications for LSB 1.3.

The first step in building an LSB-conforming application is to compile the code
with the LSB headers. If the code doesn't compile, it probably is using
something outside of the LSB. This isn't necessarily a showstopper, but it is
something to which you need to pay particular attention. The LSB headers are

installed in /opt/lsbdev-base/include. As a quick test, pass -I/opt/lsbdev-
base/include to GCC and see what happens. The compiler wrapper
described later does this step and some other related steps for you.

Once you have compiled your code, the next step and next test is to link the
code together to form the final application. Usually, this step looks like this:

gcc -o app1 obj1.o obj2.o -lfoo

The LSB stub libraries can be found in /opt/lsbdev-base/lib and can be specified
by passing the -L option to the compiler. These stub libraries are used only at
link time. Typically, the normal system libraries are used at runtime. Again, the
compiler wrapper described later handles these details for you.

Once you have linked your application, use the ldd command to see what
shared libraries are being used. At this point, there should not be any shared
libraries other than the ones specified in the LSB (and listed in the “Linux
Standard Base Libraries” sidebar). If there are, you need to take extra steps to
make them be linked statically. Usually, the -Wl,-Bstatic and -Wl,-
Bdynamic options can be used to specify that certain libraries should be
linked statically. By now, you may be seeing a pattern: the compiler wrapper
handles this for you.

As an example, here is what the application xpdf typically looks like:

ldd /usr/bin/xpdf
 libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4
 libt1.so.1 => /usr/lib/libt1.so.1
 libfreetype.so.6 => /usr/lib/libfreetype.so.6
 libSM.so.6 => /usr/X11R6/lib/libSM.so.6
 libICE.so.6 => /usr/X11R6/lib/libICE.so.6
 libX11.so.6 => /usr/X11R6/lib/libX11.so.6
 libpaper.so.1 => /usr/lib/libpaper.so.1
 libstdc++-libc6.2-2.so.3 =>
 /usr/lib/libstdc++-libc6.2-2.so.3
 libm.so.6 => /lib/libm.so.6
 libc.so.6 => /lib/libc.so.6
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2

Here is the LSB-conforming xpdf:

ldd /opt/lsb-xpdf/bin/xpdf
 libSM.so.6 => /usr/X11R6/lib/libSM.so.6
 libICE.so.6 => /usr/X11R6/lib/libICE.so.6
 libX11.so.6 => /usr/X11R6/lib/libX11.so.6
 libm.so.6 => /lib/libm.so.6
 libgcc_s.so.1 => /lib/libgcc_s.so.1
 libc.so.6 => /lib/libc.so.6
 /lib/ld-lsb.so.1 => /lib/ld-lsb.so.1

The non-LSB libraries are not showing up as needed by the application,
because they are linked statically into the application itself. There is a trade-off

here: the application executable becomes larger, but it has fewer dependencies
on the installed operating system.

 Making It Easy

Finally, we get to the compiler wrapper, lsbcc and lsbc++. These are the same
program; they simply are invoked with different names to indicate C or C++
mode. The general idea is you can use lsbcc wherever you would use GCC and
lsbc++ wherever you would use g++.

This wrapper tool parses all of the options passed to it and rearranges them
slightly. It then inserts a few extra options to cause the LSB-supplied headers
and libraries to be used ahead of the normal system libraries. This tool also
recognizes non-LSB libraries and forces them to be linked statically.

Because the LSB-supplied headers and libraries are inserted into the head of
the search paths, it generally is safe to use things not in the LSB. Make sure,
however, that they are not dependent on something that intentionally has been
left out of the LSB headers and libraries and that they can be linked statically
into the applications. This allows lsbcc to be transparent in most cases.

 Using the LSB Development Environment

With the LSB development packages installed, porting a sample application
becomes as easy as the normal three-step process, but with a slight difference:

CC=lsbcc ./configure
make
make install

By telling the configure script to use lsbcc instead of GCC, it conducts its various
tests in an LSB environment and configures the software with any adjustments
or limitations that may be required. Sometimes this results in a portable
replacement for a feature being used. Generally, though, the overall
functionality is close to what it would have been if GCC were used instead. As
an exercise, try running a configure script both ways and compare the results.
Another benefit of telling configure to use lsbcc is that it automatically sets CC
to lsbcc in the generated makefiles, so you don't have to remember to pass it in
(make CC=lsbcc) every time you run make.

The lsbcc command defaults to calling GCC with the modified arguments, but
an environment variable can be used to tell it what compiler to use instead.
This should work okay for any other compiler that is command-line option
compatible with GCC.

 Testing Tool

Once the application has been built, use the lsbappchk program to test the
program to see if it conforms to the LSB. This program checks the list of shared
libraries used by your application; it also checks to make sure you are using
only the interfaces permitted by the LSB. Here is an example run:

/opt/lsbappchk/bin/lsbappchk /bin/ls
/opt/lsbappchk/bin/lsbappchk for LSB Specification 1.3.3
Checking binary /bin/ls
Incorrect program interpreter: /lib/ld-linux.so.2
Header[1] PT_INTERP Failed
Found wrong interpreter in .interp section: /lib/ld-linux.so.2
 instead of: /lib/ld-lsb.so.1
DT_NEEDED: librt.so.1 is used, but not part of the LSB
Symbol clock_gettime used, but not part of LSB

The LSB does not require that the utilities provided by the OS be LSB-
conforming themselves. Therefore, there isn't really an expectation that a
distribution's own /bin/ls should pass this test. It simply makes for a handy
example.

The output of lsbappchk tells us that /bin/ls is not an LSB-conforming
application. The first problem is it wasn't linked with the LSB-defined program
interpreter /lib/ld-lsb.so.1. The next problem is that the application is looking
for the shared library librt.so.1, which is not included in the set of LSB-defined
libraries. Lastly, the function clock_gettime() is used but is not linked statically to
the application (it would have been found in librt.so.1).

The general approach to fixing an application such as this would be to rebuild
the application using lsbcc, which would set the program interpreter correctly
and cause librt.a to be used instead of librt.so. Sometimes, statically linking a
library can cause new non-LSB symbols to be brought into the application, so
this process may have to be repeated a couple of times.

In some larger applications or in sets of related applications, it may be
desirable to create shared libraries that are used only by these applications.
This is permissible under the LSB as long as the shared library is installed as
part of the application and it resides in the application private data area, not in
any of the system library locations. The -L option to lsbappchk lets you tell the
testing tool the full path to the shared library, which is considered to be a part
of the application for the purpose of testing conformance to the LSB. Here is an
example of an LSB-conforming build of the Apache Web server, which uses
three private shared libraries:

/opt/lsbappchk/bin/lsbappchk \
 -L /opt/lsb-apache/lib/libaprutil.so.0 \
 -L /opt/lsb-apache/lib/libexpat.so.0 \
 -L /opt/lsb-apache/lib/libapr.so.0 \
 /opt/lsb-apache/sbin/httpd

/opt/lsbappchk/bin/lsbappchk for LSB Specification 1.3.3
Adding symbols for library /opt/lsb-apache/lib/libaprutil.so.0
Adding symbols for library /opt/lsb-apache/lib/libexpat.so.0
Adding symbols for library /opt/lsb-apache/lib/libapr.so.0
Checking binary /opt/lsb-apache/sbin/httpd

 Packaging

As I mentioned earlier, the LSB specifies that a package must be delivered in
the RPM file format. This does not mean that RPM has to be used to build or
package your application, although it may be the most practical option,
depending on whether you already are using it. Other options would be
creating the package in the Debian format, and then using alien to convert it to
RPM. Or, you could use some other tool for creating the RPM file format. We
have the beginnings of a tool called mkpkg to create the RPM format file, but it
likely will require something to sit on top of it to make it useful to any but the
most die-hard hacker.

In our application battery, we currently build the application and install it in a
temporary root and then invoke RPM to package up the install application. This
may seem a little clunky, but it works without much pain and produces more
consistent results across all of the different versions of RPM found in the wild.

Here is a sample spec file for the xpaint application:

Summary: An X Window System paint program
Summary: XPaint
Name: lsb-xpaint
Version: 2.6.2
Release: 3
Vendor: Free Standards Group
License: MIT
Group: Appbat/graphics
Buildroot: /usr/src/appbat/pkgroot/lsb-xpaint
AutoReqProv: no
PreReq: lsb >= 1.3

%description
LSB conforming version of xpaint. XPaint is an
X Window System color image editing program and
painting program. Xpaint is added to the LSB
Application Battery primarily to demonstrate the
use of X11 libraries.

%pre

%install

%post

%preun

%postun

%clean

%files

%attr (- bin bin) /opt/lsb-xpaint

Full source code for building and packaging this and the other applications in
the application battery can be found in the LSB Project CVS tree.

 Does This Really Work?

Yes, it really does work, although to be fair, we still are running into corner
cases and various applications that don't always follow the rules for clean,
portable code. As part of the verification for the LSB, we have created an
application battery built from the tools described here. This set of applications
includes Apache, Samba, Lynx, Python, xpdf and groff. We have tried to select a
set of real applications that provide coverage over as much of the LSB set of
interfaces as possible.

 What about C++ Applications?

LSB version 1.3 does not support C++, so the rule requiring the library to be
linked statically applies. We are adding support for C++ to LSB 2.0 to avoid this.
We provide the lsbdev-c++ package, which contains a version of libstdc++ that
was configured and built with lsbcc. This and GCC version 3.2 seem to produce
good results. We have tried other combinations of compilers and different
versions of the C and C++ libraries but ran into various problems, depending on
the nature of the application.

 Future Directions

For the LSB in general, we will continue to add additional libraries to the
specification as long as there is consensus that they are needed and have
reached a certain level of stability. This should help close the gap between how
distribution-provided and LSB-conforming applications are built.

For the LSB development environment, we will continue to make the tools
better and more transparent. The development environment is being
maintained actively, and feedback from people using these tools is appreciated.
With the addition of C++ in LSB 2.0, the development environment will be able
to drop the lsbdev-c++ package being used today in favor of the C++ stub
library, which will move into the base LSB development package.

Currently, you may have to set several options in an rpmrc or rpmmacros file to
make RPM produce LSB-conforming packages. It is our hope that we can come
up with an LSB mode for rpmbuild that can handle all of this automatically.
Hopefully, it will make it even easier to build existing packages that conform to
the LSB.

 Acknowledgements

First off, thanks to the Free Standards Group and its members for providing the
support to the LSB Project that has enabled us to accomplish as much as we
have. Secondly, thanks to the core group of developers working on the
development environment for the LSB, including Chris Yeoh, Marvin Heffler and
especially Mats Wichmann for their patience and persistence during the more
experimental phases of this project.

Resources for this article: /article/7459.

Stuart R. Anderson (anderson@freestandards.org) made the mistake of being
overheard while saying “I know how to fix that”, and he has been the lead
developer of the LSB Written Specification ever since. When not working on the
LSB, Stuart keeps busy enlightening South Carolina to open-source ideas by
converting companies one at a time.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7459.html
mailto:anderson@freestandards.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Shielded CPUs: Real-Time Performance in Standard Linux

Steve Brosky

Issue #121, May 2004

Reserve one processor for a high-priority task and improve real-time
performance.

In a multiprocessor system, a shielded CPU is a CPU dedicated to the activities
associated with high-priority real-time tasks. Marking a CPU as shielded allows
CPU resources to be reserved for high-priority tasks. The execution
environment of a shielded CPU provides the predictability required for
supporting real-time applications. In other words, a shielded CPU makes it
possible to guarantee rapid response to external interrupts and to provide a
more deterministic environment for executing real-time tasks.

In the past, a shielded CPU could be created only on symmetric multiprocessing
systems. With the advent of hyperthreading (where a single CPU chip has more
than one logical CPU), even a uniprocessor can be configured to have a
shielded CPU.

The shielded CPU approach to providing high-end real-time performance allows
the developer of a real-time application to achieve results comparable to the
results achieved using a small real-time executive. For example, the results
compare to approaches such as RTAI or RT/Linux, where Linux is run as one
process under a real-time executive. The advantages of using a pure Linux
environment for application development as opposed to one of these
executives are many. For example, Linux has support for many device drivers,
lowering the overall cost of implementing a complete application solution. A
wide variety of high-level languages for better programming efficiency is
supported. This is important for commercial applications; programming
efficiency may not be central to the design of the real-time system, but it is
helpful during the development phase and can provide additional functionality
in the end system. Furthermore, Linux offers complex protocol stacks such as
CORBA, extensive graphics capabilities and advanced application development
tools.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Besides all of the functionality available in standard Linux today, an ever-
expanding list of features is being developed for the Linux operating system,
due to the strong momentum of the Linux phenomenon. By using Linux as the
basis for an application design, a user will have many more options in the
future.

 Real-Time Means Guarantees, Not Merely Speed

A real-time application is one that must respond to a real-world event and
complete some processing task by a given deadline. A correct answer delivered
after the deadline becomes an incorrect answer. The deadlines themselves are
application-dependent and can vary from tens of microseconds up to several
seconds. For hard real-time applications, no deadlines can be missed. This
means that worst-case measurements of system metrics are the only thing that
matters to a hard real-time application, because these are the cases that cause
a missed deadline.

Because the occurrence of a real-world event is communicated to a computer
system by way of an interrupt, a real-time operating system must provide
guaranteed worst-case interrupt response time. In responding to an interrupt
and giving control to the real-time application, the computer system has
performed the first step needed to meet the deadline. Once the real-time
application is running, the system also must provide the application with
deterministic execution times. If the time it takes to execute the code
associated with a real-time application's response varies widely, deadlines are
missed.

To guarantee good interrupt response, the operating system must be able to
preempt quickly any tasks currently executing when an interrupt occurs.
Because the 2.4 Linux series does not allow one task to preempt the execution
of another task executing inside the kernel, a kernel based on this series has
poor worst-case interrupt response. A preemption patch is available to make a
task executing within the kernel preemptible. Even in a Linux kernel that has
the preemption patch installed, however, a hidden problem exists that still
causes long interrupt response delays.

The job of any operating system is to coordinate the execution of the many
tasks sharing the resources of the system. The data structures that describe
these shared resources can be corrupted if they are accessed by multiple tasks
at the same time. Therefore, all operating systems have critical sections of code
that can be accessed only by tasks in a sequential fashion. When a high-priority
task suddenly becomes runnable—because an interrupt occurred—that task
cannot take control of the CPU if another task currently is executing inside of
one of these critical sections. This means that long, critical sections have a big
impact on the ability of the system to respond to an interrupt. The low-latency

patches address some of the longer critical sections in the Linux kernel by
making algorithmic changes that shorten the critical sections.

In general, the more complex a subsystem is, the longer the critical sections.
Because Linux supports many such complex subsystems, including the
filesystems and networking and graphics subsystems, its critical sections are
very long compared to the critical sections in a small real-time OS. The
preemption patch and the low-latency patches have improved the
responsiveness of Linux greatly. Still, many critical sections can last tens of
milliseconds—not acceptable for the deadlines required by many real-time
applications.

 What Is a Shielded CPU?

As defined previously, a shielded CPU is dedicated to running a high-priority
task and the interrupt(s) associated with that task. To create a shielded CPU,
the operating system must provide the ability to set a CPU affinity for both
processes and interrupts. The 2.4 series of Linux has the ability to set CPU
affinity for interrupts, and open-source patches are available that provide this
capability for processes. (See “Kernel Korner: CPU Affinity”, LJ, July 2003).

Because a shielded CPU does not run background tasks, a high-priority task on
a shielded CPU never is prevented from responding to an interrupt because
another task currently is executing inside of a critical section on that CPU.
Interrupts always execute at a priority higher than any task, and because they
occur at unpredictable points in time, non-real-time interrupts can cause
significant non-determinism in a process' predicted execution time. A shielded
CPU is not permitted to run interrupts unless the interrupt is one that a high-
priority task on the shielded CPU is using.

 Implementing Shielded CPUs

With the ability to set CPU affinity on processes and interrupts, it would be
possible to set up a cheap implementation of CPU shielding. However, this
implementation would rely upon all processes to honor the shielded CPU by
not changing their affinity to include the shielded CPU. A stronger
implementation is desirable, and one such implementation is described below.

The user interface for specifying CPU shielding is a /proc interface that allows
an administrator to specify a mask of CPUs that are shielded, as well as a
command that manipulates this mask. This interface allows a CPU to be
marked dynamically as shielded. Once a CPU is shielded, no process can have
its CPU affinity set to include the shielded CPU unless this prohibition precludes
the process from executing on any CPUs. Thus, users must select a shielded

CPU specifically as the CPU where their tasks should execute in order to run on
the shielded CPU. Only a privileged process can add CPUs to its affinity mask.

This implementation requires changes to the code that sets a process' affinity.
The routine sys_sched_setaffinity() sets a CPU affinity. This routine is changed
to remove a shielded CPU from any user-specified mask when a CPU affinity is
set:

p->cpus_allowed_user = new_mask;
if (new_mask & ~shielded_proc)
 new_mask &= ~shielded_procs;
set_cpus_allowed(p, new_mask);

Notice that the shielded CPU bits are not removed if their removal would leave
the process with no CPUs on which to execute. The field cpus_allowed_user is a
new field in the task structure that holds the original process affinity as
specified by the user. Whenever the mask of shielded CPUs changes, the code
above needs to be reiterated over all processes in the system. This requires
knowing the original CPU affinity for this process, as set by the user. The code
that implements a change to the shielded CPU mask looks like this:

for_each_task(p) {
 new_mask = p->cpus_allowed_user & cpu_online_map;
 if (new_mask & ~shielded_proc)
 new_mask &= ~shielded_procs;
 if (new_mask != p->cpus_allowed)
 set_cpus_allowed(p, new_mask);
}

 Performance Tests

To measure interrupt response time, the realfeel benchmark from Andrew
Morton's Web site was used. This test was chosen because it uses the Real
Time Clock (RTC) driver, a mechanism for generating interrupts common to
many Linux variants. This test measures the response to an interrupt
generated by the RTC driver. The RTC driver is set up to generate periodic
interrupts at a rate of 2,048Hz. The RTC driver supports a read system call that
returns to the user when the next interrupt has fired. The clock used to
measure interrupt response is the IA-32 TSC timer, which has a resolution
based on the CPU's clock speed. To measure interrupt response time, the test
first reads the value of the TSC and then loops doing reads of /dev/rtc. After
each read completes, the test finds the current value of the TSC. The difference
between two consecutive TSC values measures the duration that the process
was blocked waiting for an RTC interrupt. The expected duration is 1/2,048 of a
second. Any time beyond the expected duration is considered latency in
responding to an interrupt.

To measure worst-case interrupt response time, a strenuous background
workload must be run on the system. This workload must provide the system
with sufficient overhead to cause delays in the ability of the system to respond
to interrupts as well as the resource contention that causes non-deterministic
execution. The Red Hat stress-kernel RPM was chosen as the workload. The
following programs from stress-kernel were used: TTCP, FIFOS_MMAP, P3_FPU,
FS and CRASHME.

The TTCP program sends and receives large data sets over the loopback device.
FIFOS_MMAP is a combination test that alternates sending data between two
processes by way of a FIFO and operations on an mmaped file. The P3_FPU test
manipulates floating-point matrices through various operations. The FS test
performs all sorts of operations on a set of files, such as creating large files with
holes in the middle, then truncating and extending those files. Finally, the
CRASHME test generates buffers of random data, then jumps to that data and
tries to execute it. Although no Ethernet activity is generated on the system, the
system remains connected to a network and handles standard broadcast traffic
during the test runs.

A new version of stress-kernel's NFS_COMPILE test was used because the
original version had errors in its cleanup that prevented the test from being run
for an extended period of time. The NFS_COMPILE script is the repeated
compilation of a Linux kernel, using an NFS filesystem exported over the
loopback device. The system used to run all tests was a dual-processor Pentium
4 Xeon with 1GB of memory and a SCSI disk drive.

 Testing Results

RedHawk Linux version 1.3, from Concurrent Computer Corporation, was used
to measure interrupt response on a shielded CPU. RedHawk is a Linux kernel
based on kernel.org 2.4.21. It should be noted that shielded CPUs are only one
of the real-time enhancements made to the RedHawk Linux kernel. Some of the
other enhancements also contributed to the reported performance numbers
below. For example, various open-source patches have been applied to this
kernel, including Robert Love's preemption patch, Andrew Morton's low-latency
patches and the O(1) scheduler from the 2.5 Linux tree. Other changes that
might impact the performance of this test include algorithmic changes to
reduce the remaining worst-case critical sections in the Linux kernel and
changes to allow bottom-half interrupt processing to be performed inside of a
kernel dæmon, whose scheduling policy and priority can be specified.

Figure 1 compares the interrupt response measured under RedHawk Linux
using a shielded CPU and without using a shielded CPU. The difference
between these runs is striking. In both test cases, most of the time the system
was able to respond to the RTC interrupt in less than 100 microseconds. This

shows that, in general, Linux responds to an interrupt in a timely manner.
However, as stated above, the most important aspect of system metrics for a
real-time system is the worst-case timings. This is because the worst cases are
examples of system behavior that can cause a real-time application to miss its
deadline.

Figure 1. Comparing Interrupt Response between Shielded and Unshielded CPUs

In the shielded CPU case, the worst-case interrupt response time for the RTC
interrupt was 220 microseconds. In the case where CPU shielding was not used,
all interrupts responded in less than 10 milliseconds, an order of magnitude
worse than the worst-case interrupt response time on a shielded CPU.
Although less than one percent of the samples in this test case were greater
than 200 microseconds, in many thousands of cases the interrupt response
exceeded 500 microseconds. In a real-time system, each of these cases would
be an opportunity for a missed deadline.

The same interrupt response test also was run on an unmodified 2.4.21
kernel.org kernel (Figure 2) as well as on Red Hat version 8.0 (Figure 3). This Red
Hat kernel does not contain the preemption patch, but it does contain the low-
latency patches, which are meant to address the longest critical sections in the

https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f1.large.jpg

Linux kernel. Because shielded CPUs are not present in either of these kernels,
the results are reported only for the non-shielded case.

Figure 2. Interrupt Response (kernel.org 2.4.21-pre4)

https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f3.large.jpg

Figure 3. Interrupt Response (Red Hat 8.0)

These kernels show a typical interrupt response time similar to that measured
on the RedHawk kernel, with most interrupts occurring in less than 100
microseconds. However, the worst-case interrupt response for these kernels is
even worse than the non-shielded case under RedHawk Linux, with kernel.org
showing a worst-case interrupt response of 107 milliseconds and Red Hat
showing a worst-case interrupt response of 323 milliseconds. These results are
not surprising considering that these kernels are tuned to achieve fairness
between the processes that share the system and for general system
throughput rather than for guaranteed real-time response.

 Conclusions

It has been shown that a shielded CPU offers a significant improvement in the
worst-case interrupt response time for a Linux system. Shielded CPUs are
effective because they reserve critical computing resources for the highest
priority tasks in the system. This is accomplished without affecting the standard
application programming interface of Linux.

This article has discussed only the response to the RTC interrupt; it was chosen
because it is a standard feature in most Linux implementations. It is possible,

https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/6900f3.large.jpg

however, to achieve even better interrupt response guarantees by using other
interrupt sources and more highly optimized device drivers. For a more
extensive exploration of the shielded CPU concept as well as test results for a
device driver that provides an even better interrupt response guarantee, see
the whitepaper at www.ccur.com/isddocs/wp-shielded-cpu.pdf.

Stephen Brosky is Chief Scientist of the Integrated Solutions Division of
Concurrent Computer Corporation. He was also a member of the IEEE
committee that developed the POSIX 1003.1b and 1003.1c standards for real-
time application interfaces and threads interfaces.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.ccur.com/isddocs/wp-shielded-cpu.pdf
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 At the Forge

Blosxom

Reuven M. Lerner

Issue #121, May 2004

No modules, no SQL, no hassle. Create a blog with power features without even
restarting the Web server.

Weblogs, or blogs, have grown dramatically in popularity over the past few
years. Only a few people wrote blogs in the mid- and late 1990s, but now the
blogging phenomenon is an overwhelming trend. Indeed, blogging is becoming
so widespread that the New York Times Magazine published an article about it
earlier this year—concentrating on high-school students who write their own
blogs.

For example, as I write this, the Democratic primaries currently are in high gear,
and every candidate has at least one official Weblog. Professional and armchair
political commentators have set up their own blogs to analyze and counter
claims the candidates make in their blogs and elsewhere.

Last month, we looked at COREBlog, a Zope product that makes it easy to
create your own Weblog. Of course, COREBlog requires that you have a copy of
Zope at your disposal and that you can install and modify products. Not
everyone has this luxury, whereas almost every Web hosting provider makes it
possible to run CGI programs written in Perl on your Web site. For this reason,
many of the most popular blogging packages are small programs that do not
raise the ire of an ISP.

This month, we look at Blosxom (pronounced blossom), a Weblog package
written in Perl and designed to be run as a CGI program on a Web site. Blosxom
was written by Rael Dornfest, a programmer at O'Reilly and Associates. I initially
wrote off Blosxom as an unrealistic tool for blogging, assuming that its small
size was indicative of its abilities. But Blosxom's power is not only in its strong
feature set but in the way it allows us to mix and match functionalities.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Installation

Installing Blosxom should be a piece of cake for anyone with experience
working with a Web server. It consists of a single CGI program written in Perl. In
my case, all I had to do was copy the file, blosxom.cgi, to /usr/local/apache/cgi-
bin, and I was up and running.

Of course, every piece of software requires at least a bit of configuration, and
Blosxom is no exception. All of the configuration is handled by a few Perl
variables at the top of the program. Comments make the purpose of each
variable relatively clear. To configure Blosxom for my system, for example, I
changed the following variables:

• $blog_title: the title of the Weblog as it appears to users and in the RSS
syndication feed.

• $blog_description: blog description that appears on the front page and in
the RSS feed.

• $datadir: each entry in a Blosxom Weblog actually is a text file on disk
somewhere; $datadir defines where those files should reside.

With those three elements defined, my Weblog was up and running.

 Adding Entries

I tested Blosxom by creating a simple text file in $datadir, introduction.txt:

This is a test entry.

<p>Hello!</p>

As Weblog entries go, this one was pretty boring. But it was interesting to see
how this entry appears in my Weblog, preceded by a date, followed by a
timestamp and a permanent link and with the first line boldfaced, as if it were a
headline or title.

In other words, you can add entries to a Blosxom Weblog simply by creating
new text files in the data directory. Any file ending with the value of
$file_extension, which is txt by default, is considered a Weblog entry. This way,
Emacs backup files, which end with ~, never are considered entries. But, if you
are like me and have the habit of saving often while writing, you might be
surprised to discover that your Weblog is being updated as you write it, live and
for the whole world to see. If you want to work in the background, simply leave
the .txt extension off the filename until you're ready to publish it.

On my workstation, where I installed Blosxom in the main cgi-bin directory, I
can see my Blosxom blog as http://localhost/cgi-bin/blosxom.cgi.

Blosxom assigns a date and time to an entry based on the timestamp of the file
that was created. Because I created the file on February 11, at 4PM, the Weblog
entry was timestamped with that time. This means you can change the
timestamp of a file retroactively with the touch command, as in:

touch -t 200401011500 testing.txt

The above command modifies the date of the file testing.txt to 3PM on January
1, 2004. (If testing.txt does not exist already, it is created.) Although this might
go against the etiquette of the Weblog universe, it certainly is possible.

More interestingly, you can modify the time of a Weblog entry to be in the
future, using the same touch command on the command line. If the
$show_future_entries configuration variable is set to 1, entries with such future
dates are displayed all of the time. But in the default configuration, entries are
displayed only when their date matches the current date. This means you can
time-bomb your entries to be displayed on a particular time and date.

 Flavours

If this were all that Blosxom provides, I would not be too impressed. But after
examining it a bit more closely, I see that it contains a great deal of power. That
power is there thanks to the combination of display templates (known as
flavours, using the British spelling) and the ability to accept any number of
plugin programs. The combination of these two features makes Blosxom quite
extensible.

Blosxom comes with two flavours built-in, the default HTML flavour and the
optional RSS flavour for the RSS syndication feed. You can view the RSS feed
yourself by tacking ?flav=rss onto the end of your blog's URL. So, if you
normally view your Weblog at http://localhost/cgi-bin/blosxom.cgi, you can view
the RSS feed for the site at http://localhost/cgi-bin/blosxom.cgi?flav=rss.
Alternatively, you can specify your preferred flavour by changing the suffix of
the page you retrieve. Thus, we can see RSS with http://localhost/cgi-bin/
blosxom.cgi/index.rss.

A complete flavour registry is available on the Blosxom Web site. But the basic
idea is easy to grasp: in your data directory, alongside your Weblog entries, you
create an HTML file whose name reflects the part of Blosxom's output you want
to change.

The filename's suffix is the same as the flavour you want to modify. Thus, the
file header.html changes the way the Weblog's header is displayed in the HTML
flavour, and date.blah changes Blosxom's display of dates in the blah flavour.
Users can set the flavour in the URL by adding the flav name-value pair (as we
saw before), and the default is set in blosxom.cgi itself, with the variable
$default_flavour. Because blog entries have a .txt suffix, you cannot have a txt
flavour.

Each flavour file consists of an HTML snippet, along with Perl variable names
that might be instantiated into the particular file. For example, story flavour
files receive the variables $title and $body, among others. (A full list is available
on the Blosxom Web site.) I thus can change my blog's output such that
headlines are huge and right-aligned, followed by the body:

<p>
<H1 align="right">$title</h1>

$body
</p>

The above flavour inserts the $body variable, the contents of our blog story,
verbatim into the HTML. This is fine if the blog author knows HTML and is
willing to enter paragraph tags manually. But if we want to let people separate
paragraphs with blank lines, we need to run a program on our story. Luckily,
Blosxom makes it easy to write such programs with an extensible plugin
architecture.

Plugins

Each plugin is a Perl program loaded with the require function, which reads and
evaluates code in a particular file. So require foo.pl opens foo.pl and
evaluates the code it contains. I normally suggest that people avoid require
in favor of use, which executes a number of commands, including require.
However, because require executes at runtime, whereas use executes during
the compilation phase, it is far easier to work with it here.

Blosxom assumes that any file in the plugin directory, defined by the optional
$plugin_dir variable, is a plugin. Plugins are both loaded and applied in
alphabetical order, which means if you want to make sure a particular plugin is
applied first or last, you might need to rename it.

Each plugin is nothing more than a simple Perl program that defines one or
more subroutines. Every plugin must define the start subroutine, which simply
returns 1. This allows Blosxom to determine that the plugin is alive, ready and
willing to be invoked. A number of other plugin subroutines are available that

each plugin optionally may define, ranging from entries (which returns a list of
entries) to story (which allows you to modify the contents of a story). By
breaking things down in this way, Blosxom allows for a tremendous amount of
customization and sophistication, while keeping the core code small and
compact.

So, what sorts of features can plugins provide? There seems to be only a few
restrictions. You can change the source from which Weblog entries are
retrieved, the way in which this list of entries is filtered, the templates used to
display the entries and the contents of the entries themselves.

A large number of plugins are available from the Blosxom Web site. Some of
them depend on other plugins, while others, such as the calendar, appear only
if you are using a flavour that supports the plugin. Other plugins work
immediately and merely need to be dropped into your plugin directory.

A simple example of a plugin that works out of the box is atomfeed, which
provides an Atom syndication feed. Atom is a competitor to RSS that has been
promoted by a number of heavy-hitting bloggers and programmers, in no small
part because of the competing standards now evident in the RSS world. To get
an Atom feed, simply copy the atomfeed plugin to your plugins directory. You
then can retrieve your Atom feed with http://localhost/cgi-bin/blosxom.cgi?
flav=atom or http://localhost/cgi-bin/blosxom.cgi/index.atom.

 Writing Plugins

Listing 1 contains a simple filter, called egotrip, to make my name appear in
boldface whenever it appears in a Weblog entry. Notice how the plugin must
define its own package; this ensures that each plugin's subroutines are kept in
a separate namespace and makes it possible for Blosxom to determine
whether a package contains a particular method name.

Listing 1. egotrip.pl

#!/usr/bin/perl

use strict;
use warnings;
use diagnostics;

package egotrip;

Returns 1 to indicate the plugin is active
sub start
{
 return 1;
}

Boldfaces my name
sub story {

 my ($pkg, $path, $filename, $story_ref,
 $title_ref, $body_ref) = @_;

 $$body_ref =~ s|Reuven|Reuven|g;
 1;
}

1;

The actual work is done in the story subroutine, which is passed six arguments
when invoked by Blosxom, corresponding to a number of items having to do
with the entry. In our case, we care about changing only the body of the entry,
which is in the final variable, known as $body_ref. As its name implies, this is a
scalar reference, which means we can access or modify its contents by
dereferencing it, using two $$ signs. With that in mind, it should not come as a
surprise that we can boldface every instance of my name with:

$$body_ref =~ s|Reuven|Reuven|g;

Of course, we could make this step even more sophisticated and insert
automatic hyperlinks to a number of different items:

$$body_ref =~ s|(Reuven Lerner)|
↪$1|g;
$$body_ref =~ s|(Linux Journal)|
↪$1|g;

Indeed, a plugin of this sort already exists; it automatically creates links to the
community-driven Wikipedia. Any text placed within [[brackets]] automatically
is turned into a link to that on-line reference book.

Notice how flavours are HTML templates into which we can instantiate Perl
variable values, whereas plugins are Perl programs. This division between
display and actions takes a little bit of time to grasp, but it shouldn't be too
difficult.

As for our paragraph-separating problem from before, there's no need to
reinvent the wheel. You simply can download a plugin, Blox, that allows you to
separate paragraphs with blank lines when writing your blog entry. The plugin
then separates paragraphs with the HTML of your choice. Blox is listed on
Blosxom's plugin registry (see the on-line Resources section).

The fact that Blosxom keeps all entries and flavours in a single directory is a bit
disturbing to me and makes me wonder about the program's scalability. Even if
my filesystem and Perl can handle that many files without too much trouble, do
I really want to wade through them all? If and when this becomes a problem, an
entries plugin probably can provide the right solution, scooping up files from
multiple directories and returning an appropriate hash to Blosxom.

 Conclusion

Blosxom is a powerful tool for creating a Weblog; it's more than it might appear
at first glance. Blosxom consists of an easy-to-install, easy-to-configure CGI
program written in Perl, but its true power lies in the fact that it lets you change
every part of the display through a combination of flavours (display templates)
and plugin routines. By mixing and matching existing flavours and templates
with something of your own, it can be easy to create your own Weblog.

Resources for this article: /article/7454.

Reuven M. Lerner, a longtime consultant in Web/database programming, now
is a graduate student in Learning Sciences at Northwestern University in
Evanston, Illinois. You can reach him at reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7454.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner

Using DMA

James Bottomley

Issue #121, May 2004

DMA makes I/O go faster by letting devices read and write memory without
bothering the CPU. Here's how the kernel keeps track of changes that happen
behind the CPU's back.

DMA stands for direct memory access and refers to the ability of devices or
other entities in a computing system to modify main memory contents without
going through the CPU. The desirability of DMA lies in not troubling the CPU;
the system simply can request that the data be fetched into a particular
memory region and continue with other tasks until the data is ready. Most of
the problems in DMA, however, are due to the lack of CPU involvement.

The problems with DMA are threefold. First, the CPU probably is operating a
memory management unit. Therefore, the address the CPU uses to describe
the memory region is not the same as the physical address of main memory.
Second, because the transfer is to main memory, the caches between that
memory and the CPU probably are not coherent (see “Understanding Caching”,
LJ, January 2004. Third, there also may be a memory management unit on the I/
O bus (called an IOMMU). This means the bus address the device uses to
transfer the data may not be the same as the physical memory address or the
CPU's virtual memory address. This concept is alien to most x86 people. Even
here, though, the use of GARTs (graphical aperture remapping tables) for the
AGP bus is making the x86 refusal of IOMMUs less strong than it once was.

The API that manages DMA in the Linux kernel must take into account and
solve all three of these problems. In addition, because most DMA is done from
devices on an external bus, three additional problems may occur. First, the I/O
device addressing width may be different from the address width of physical
memory. For instance, an ISA device is limited to addressing 24 bits, and some
PCI devices in 64-bit systems are limited to addressing 32 bits. Second, the I/O

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

bus controller circuitry itself may cache requests. This occurs mainly on the PCI
bus, where write requests may be held in the PCI controller in the hope that it
may accumulate them for rapid transfer to the device. This phenomenon is
called PCI posting. Third, the operating system may request a transfer to a
region that is contiguous in its virtual memory space but fragmented in the
memory's physical space, usually because the requested transfer crosses
multiple pages. Such a transfer must be accomplished using scatter/gather (SG)
lists.

This article deals strictly with the DMA API for devices. The new generic device
model in Linux 2.6 provides a nice way of describing device characteristics and
finding their bus properties using a hierarchical tree. The interfaces described
have undergone considerable revision in the transition from 2.4 to 2.6.
Although the general principles of this article apply to 2.4, the API described
and the kernel capabilities apply only to the 2.6 kernel.

SG Lists

For any DMA transfer, the first problem to consider is the user may request a
large transfer (kilobytes to megabytes) to a given buffer. Because of the way
virtual memory is managed, however, this area, which is contiguous in virtual
space, may be composed of a sequence of pages fragmented all over physical
memory. Linux expects that any transfer above a page size (4KB on an x86
system) needs to be described by an SG list. Ordinarily, these lists are
constructed by the block I/O (BIO) layer. A key job of the device driver is to
parameterize the BIO layer in the way it may divide up the I/O into SG list
elements.

Almost every device that transfers large amounts of data is designed to accept
these transfers as some form of SG list. Although the exact form of this list is
likely to differ from the one supplied by the kernel, conversion usually is trivial.

I/O Memory Management Units (IOMMUs)

https://secure2.linuxjournal.com/ljarchive/LJ/121/7104f1.large.jpg

Figure 1. Address Domains in DMA

An IOMMU is a memory management unit that goes between the I/O bus (or
hierarchy of buses) and the main memory. This MMU is separate from the
IOMMU built in to the CPU. In order to effect a transfer from the device to main
memory, the IOMMU must be programmed with the address translations for
the transfer in almost exactly the same way as the CPU's MMU would be
programmed. One of the advantages of doing this is an SG list generated by the
BIO layer can be programmed into the IOMMU such that the memory region
appears to be contiguous again to the device on the bus.

GARTs and IOMMU Bypass

A GART basically is like a simple IOMMU. It consists of a window in physical
memory and a list of pages. Its job is to remap physical addresses in the
window to physical pages in the list. The window typically is narrow, only about
128MB or so, and any accesses to physical memory outside this window are not
remapped. This insufficiency exposes a weakness in the way the Linux kernel
currently handles DMA: none of the DMA APIs have a failure return for failing to
map the memory. A GART has a limited amount of remapping space, however,
and once that is exhausted nothing may be mapped until some I/O completes
and frees up mapping space.

Sometimes, like a GART, an IOMMU may be programmed not to do address
remapping between the I/O bus and the memory in certain windows. This is
called bypass mode and may not be possible for all types of IOMMU. Bypass
mode is desirable sometimes, because the act of remapping adds a
performance hit to the transfer, so lifting the IOMMU out of the way can
achieve an increase in throughput.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7104f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7104f1.large.jpg

The BIO layer, however, assumes that if an IOMMU is present, it is being used,
and it calculates the space needed for the device SG list accordingly. Currently,
no way exists to inform the BIO layer that the device wishes to bypass the
IOMMU. A problem occurs if the BIO layer assumes the presence of an IOMMU;
it also assumes SG entries are being coalesced by the IOMMU. Thus, if the
device driver decides to bypass the IOMMU, it may find itself with more SG
entries than the device allows.

Both of these issues are being worked on in the 2.6 kernel. A fix for the IOMMU
bypass already is under consideration and will be invisible to driver writers,
because the platform code will choose when to do the bypass. The fix for the
inability to map probably will consist of making the mapping APIs return failure.
Because this fix affects every DMA driver in the system, implementing it is going
to be slow.

Bus Widths and DMA Masks

In order to communicate the maximum addressing width, every generic device
has a parameter, called the DMA mask, that contains a map of set bits
corresponding to the accessible address lines that must be set up by the device
driver. The DMA width has two separate meanings depending on whether an
IOMMU is in use. If there is an IOMMU, the DMA mask simply represents a
limitation on the bus addresses that may be mapped, but through the IOMMU,
the device is able to reach every part of physical memory. If there is no IOMMU,
the DMA mask represents a fundamental limit of the device. It is impossible for
the device to transfer to any region of physical memory outside this mask.

The block layer uses the DMA mask when building a scatter/gather list to
determine whether the page needs to be bounced. By bounce, I mean the block
layer takes a page from a region within the DMA mask and copies all the data
to it from the out-of-range page. When the DMA has completed, the block layer
copies it back again to the out-of-range page and releases the bounce page.
Obviously, this copying back and forth is inefficient, so most manufacturers try
to ensure that the devices with which their server-type machines ship don't
have DMA mask limitations.

DMA and Coherency

DMA occurs without using the CPU, so the kernel has to provide an API to bring
the CPU caches into sync with the memory changed by the DMA. One thing to
remember is the DMA API brings the CPU caches up to date only with respect
to the kernel virtual addresses. You must use a separate API, described in my
article “Understanding Caching”, to update the caches with respect to user
space.

Bus Posting (Caching)

Sometimes high-end bus chips also come with caching circuitry. The idea
behind this is that writes from the CPU to the chipset are fast, but writes across
the bus are slow, so if the bus controller caches the writes, the CPU doesn't
need to wait for them to complete. The problem with bus posting, as this type
of caching is called, is that no CPU instruction is present to flush the bus cache,
so bus cache flushes work according to a strict set of rules to ensure proper
ordering. First, the rules are that only memory-based writes may be cached.
Writes that go through I/O space are not cached. Second, the ordering of
memory-based reads and writes must be preserved strictly, even if the writes
are cached. This last property allows a driver writer to flush the cache. If you
issue a memory-based read to any part of the device's memory region, all
cached writes are guaranteed to be issued before the read begins.

No API is available to help with posting, so driver writers need to remember to
obey the bus posting rules when reading and writing a device's memory region.
A good trick to remember is if you really can't think of a necessary read to flush
the pending writes, simply read a piece of information from the device's bus
configuration space.

Using the DMA API in a Device Driver

The API is documented thoroughly in the kernel documentation directory
(Documentation/DMA-API.txt). The generic DMA API also has a counterpart that
applies only to PCI devices and is described in Documentation/DMA-
mapping.txt. The intent of this section is to provide a high-level overview of all
the steps necessary to get DMA working correctly. For detailed instructions, you
also should read the above-mentioned documentation.

To start, when the device driver is initialized, the DMA mask must be set:

int
dma_set_mask(struct device *dev, u64 mask);

where dev is the generic device and mask is the mask you are trying to set.
The function returns true if the mask has been accepted and false if not. The
mask may be rejected if the actual system width is narrower; that is, a 32-bit
system may reject a 64-bit mask. Thus, if your device is capable of addressing
all 64 bits, you first should try a 64-bit mask and fall back to a 32-bit mask if
setting the 64-bit mask fails.

Next, you need to allocate and initialize the queue. This process is somewhat
beyond the scope of this article, but it is documented in Documentation/block/.
Once you have a queue, two vital parameters need to be adjusted. First, allow

for the largest size of your SG table (or tell it to accept an arbitrarily big one)
with:

void
blk_queue_max_hw_segments(request_queue_t *q,
 unsigned short max_segments);

Second, (if you need it), the overall maximum size:

void
blk_queue_max_sectors(request_queue_t *q,
 unsigned short max_sectors);

Finally, the DMA mask must be programmed into the queue:

void
blk_queue_bounce_limit(request_queue_t *q,
 u64 max_address);

Usually, you set max_address to the DMA mask. If an IOMMU is being used,
however, max_address should be set to BLK_BOUNCE_ANY to tell the block
layer not to do any bouncing.

Device Operation

To operate a device, it must have a request function (see the BIO
documentation) whose job it is to loop around and pull requests from the
device queue using the command:

struct request
*elv_next_request(request_queue_t *q);

The number of mapping entries required by the request are located in req-
>nr_phys_segments. You need to allocate an interim table of this size in units of
sizeof(struct scatterlist). Next, do the interim mapping with:

int
blk_rq_map_sg(request_queue_t *q,
 struct request *req,
 struct scatterlist *sglist);

This returns the number of SG list entries used.

The following command provides the interim table supplied by the block layer,
which finally is mapped using:

int
dma_map_sg(struct device *dev,
 struct scatterlist *sglist, int count,
 enum dma_data_direction dir);

where count is the value returned and sglist is the same list passed into
the function blk_rq_map_sg. The return value is the number of actual SG list
entries needed by the request. The SG list is reused and filled up with the actual
entries that need to be programmed into the device's SG entries. The dir
provides a hint about how to cope correctly with cache coherency. It can have
three values:

1. DMA_TO_DEVICE: the data is being transferred from memory to the
device.

2. DMA_FROM_DEVICE: the device is transferring data into main memory
only.

3. DMA_BIDIRECTIONAL: no hint is given about the transfer direction.

Two macros should be used when traversing the SG list to program the device's
SG table:

dma_addr_t
sg_dma_address(struct scatterlist *sglist_entry);

and:

int
sg_dma_len(struct scatterlist *sglist_entry);

which return the bus physical address and segment lengths, respectively, of
each entry.

The reason for this two-stage mapping of the request is because the BIO layer
is designed to be generic code and has no direct interaction with the platform
layer, which knows how to program the IOMMU. Thus, the only thing the BIO
layer can calculate is the number of SG segments the IOMMU makes for the
request. The BIO layer doesn't know the bus addresses the IOMMU assigns to
these segments, so it has to pass in a list of the physical memory addresses of
all the pages that need to be mapped. It is the dma_map_sg function that
communicates with the platform layer, programs the IOMMU and retrieves the
bus physical list of addresses. This too is why the number of elements the BIO
layer needs for its list may be longer than the number returned by the DMA
API.

When the DMA has completed, the DMA transaction must be torn down with:

int
dma_unmap_sg(struct device *dev,
 struct scatterlist *sglist,
 int hwcount,
 enum dma_data_direction dir);

where all the parameters are the same as those passed into dma_map_sg
except for hwcount, which should be the value returned by that function. And
finally, the SG list you allocated may be freed and the request completed.

Accessing Data in the DMA region

Usually, the device driver operates without touching any of the data it is
transferring. Occasionally, however, the device driver may need to modify or
inspect the data before handing it back to the block layer. To do this, the CPU
caches must be made coherent with the data by using:

int
dma_sync_sg(struct device *dev,
 struct scatterlist *sglist,
 int hwcount,
 enum dma_data_direction dir);

where the arguments are identical to dma_unmap_sg.

The most important factor in accessing data is when you do it. The rules for
accessing depend on dir:

• DMA_TO_DEVICE: the API must be called after modifying the data but
before sending it to the device.

• DMA_FROM_DEVICE: the API must be called after the device has returned
the data but before the driver attempts to read it.

• DMA_BIDIRECTIONAL: the API may need to be called twice, after modifying
the data but before sending it to the device and after the device finishes
with it but before the driver accesses it again.

Allocating Coherent Memory

Most devices use mailbox-type regions of memory for communication between
the device and the driver. The usual characteristic of this mailbox region is that
it is never used beyond the device driver. Managing the coherency of the
mailbox using the previous API would be quite a chore, so the kernel provides a
method for allocating a region of memory guaranteed to be coherent at all
times between the device and the CPU:

void
*dma_alloc_coherent(struct device *dev, size_tsize,
 dma_addr_t *physaddr, int flag);

This returns the virtual address of a coherent region of size that also has a bus
physical address (physaddr) to the device. The flag is used to specify the
allocation type GFP_KERNEL to indicate the allocation may sleep to obtain the

memory and GFP_ATOMIC to indicate the allocation may not sleep and may
return NULL if it cannot obtain the memory. All memory allocated by this API
also is guaranteed to be contiguous both in virtual and bus physical memory.
There is an absolute requirement that size be less than 128KB.

As part of driver removal, the coherent region of memory must be freed with:

void
dma_free_coherent(struct device *dev, size_tsize,
 void *virtaddr,
 dma_addr_t *physaddr);

where size is the size of the coherent region and virtaddr and physaddr
are the CPU virtual and bus physical addresses, respectively, returned for the
coherent region.

Conclusions

The article offers a lightning-quick overview of how the block layer interacts
with device drivers to produce SG lists for programming devices. You may find
several additional pieces of the DMA API useful, including APIs that handle
unfragmented regions of physical memory. If this article whets your appetite,
you're now ready to move on to reading the kernel Documents and source.

James Bottomley is the Software Architect for SteelEye. He also is an active
member of the Open Source community. He maintains the SCSI subsystem, the
Linux Voyager port and the 53c700 driver and has made contributions to PA-
RISC Linux development in the area of DMA/device model abstraction.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

Eye Candy for Admins? Aye, SuperKaramba!

Marcel Gagné

Issue #121, May 2004

Don't merely monitor your system logs—give your system stats displays a
certain je ne sais quoi with GUI tools.

You see, François, administering your Linux system is all about information.
When it comes down to knowing what is happening with our servers, too much
information is just about right. Yes, mon ami, I am joking, but only a little. Every
Linux system has an ongoing chatter, whether it is a server or a desktop.
Statistics constantly are pouring in on CPU activity, disk space and memory
allocation and logs are being filled. Don't forget logs, François, logs of e-mail
traffic, FTP and Web site transfers, services starting and stopping. That's a lot to
keep up with, and having the right tools is essential.

Quoi? It looks like eye candy? Well, it is, François. No one said keeping track of
what your systems are up to couldn't be fun, not to mention stylish. But
enough of this. Our guests will be here any moment, and we must be ready.
Mon Dieu!, they are here already. Welcome, everyone, to Chez Marcel, home of
fine Linux fare and excellent wines. Please sit and I will have François fetch the
wine. To the wine cellar, François! Bring back the 2000 Chablis Les Clos. Vite!

Make yourselves comfortable mes amis. The theme of this issue is system
administration, and any one of us who runs any kind of computer—even if it's
only a home system—is the administrator of that system. You are the boss,
mes amis. Sometimes, you are the boss of many, and sometimes you are your
own boss. Now you all know what they say about system administrators, non?
A good system administrator is forewarned, and as the saying goes,
forewarned is forearmed. Four arms, of course, is a highly unusual number of
arms for a sysadmin to have; although many, I'm sure, could see the advantage.
It is because of this inherent strangeness that I present you with today's menu,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

a collection of graphical tools that should keep you informed while adding a
certain je ne sais quoi to your system.

Desktop wallpaper is interesting enough, but dynamic applications can be put
on the desktop as well. For instance, imagine a monitor for CPU usage, disk
space and network activity floating transparently on your desktop, constantly
being updated. If this sounds interesting, get your hands on Adam Geitgey's
SuperKaramba. The Super in front of Karamba might lead you to believe there
was a predecessor to this package, and you would be right. Hans Karlsson is
the author of the original Karamba. To see a wonderfully busy SuperKaramba
desktop, have a look at Figure 1.

Figure 1. SuperKaramba themes are informative and look cool.

Pick up the latest source at the SuperKaramba Web site (see the on-line
Resources section). Building the package is something with which most of you
are familiar—the extract and build five-step:

tar -xzvf superkaramba-0.33.tar.gz
cd superkaramba-0.33
./configure --prefix=/usr
make
su -c "make install"

You need Python development libraries to build the package from source. For
those who would prefer to skip all that compiling, links are provided on the
main SuperKaramba page, along with precompiled binaries for several
distributions. If you do decide to compile SuperKaramba and are running KDE
3.2, you may encounter a little weirdness. This also might be fixed in the source

https://secure2.linuxjournal.com/ljarchive/LJ/121/7417f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7417f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7417f1.large.jpg

code by the time you read this, but themes are always on top, blocking other
active windows. Fix this by editing the karamba.cpp file in the src directory after
you extract the source. Look for the line that reads:

KWin::setType(winId(), NET::Dock);

and comment it out by adding two slashes in front of the line, like this:

// KWin::setType(winId(), NET::Dock);

That's it. Go ahead with your compile and all is well.

Start SuperKaramba from the command line with superkaramba. The
program also shows up in my KDE Utilities menu. When the program starts, you
see a window offering you three choices (Figure 2). Mon Dieu! François, bring
the wine here immï¿½iatement and refill my glass. It seems that some Python
did sneak into the code after all.

Figure 2. The SuperKaramba Startup Screen

Clicking Open lets you select from SuperKaramba themes already installed on
your system. As of this writing, the themes section of the SuperKaramba site
had not yet been launched. You instead were directed to the Karamba section
of KDE-Look.org. Look for Karamba in the menu on the left. The various themes
are arranged by several criteria you can select by clicking the tabs above the
list. Browse by the most recent or most popular in terms of downloads or
highest rated.

Each Karamba theme shows a screenshot and provides a download. Choose
something appropriate, then download and extract the tarball to an
appropriate directory. Some of these are tarred and gzipped, others are tarred
and bzipped. There is no hard-and-fast rule as to where themes end up living,
because the open dialog lets you find them anywhere. I created a directory
called Karamba where I store my files. Let's say that Kelley at table 16 wanted
to load Flavio Gargiulo's Micromon theme (Figure 3), a trimmed-down version
of Simon Ask Ulsnes' Minimon, which comes in a tarred and gzipped bundle. He
would do the following:

cd ~/Karamba_dir
tar -xvf 8722-micromon-1.0.tar.gz

Figure 3. Micromon systems stats float across your desktop.

On the other hand, if Jon at table 9 wanted to install Matti's Liquid Weather
theme (Figure 4), which comes in a bzip2 tarred bundle, he would use this
command:

cd ~/Karamba_dir
tar -xjvf lwp-1.9.tar.bz2

Figure 4. The Liquid Weather theme can be modified to report on any location.

Perhaps a weather theme isn't strictly sysadmin material, but that's Jon for you.
In any case, there's no other building or installing. Extract the files, and you are
done. Then, navigate to the install directory and look for the file with a .theme
extension. Click that file and click OK. The theme starts up and appears on your
desktop.

Launching subsequent themes doesn't require you to re-run superkaramba.
Instead, right-click on a running theme and choose Open new theme. Right-
clicking on a running theme provides several menu options, including the ability
to edit a currently running theme or its configuration file (Figure 5). Theme files
generally are easy to read and lend themselves to simple edits. For instance, I
modified the Micromon theme (Figure 1) to display my own disk partitions
instead of the ones defined by the author. I also increased the font size to make
it easier to read.

Figure 5. Editing a SuperKaramba .theme File

https://secure2.linuxjournal.com/ljarchive/LJ/121/7417f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7417f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7417f5.large.jpg

To move a theme around on your desktop, hold down the Alt key, left-click with
the mouse and drag the SuperKaramba theme to wherever you want it located
on your desktop. That positional information is stored in .rc files located in the
.superkaramba directory in your home directory. Mine, for instance, is in /
home/marcel/.superkaramba. Before you go looking at the .rc file for one of
your running themes, I should warn you about an interesting effect. Until you
shut down a theme or log out, the .rc file remains blank. One way to write out
the file without shutting down the application is to right-click on the running
theme and select Reload theme. Here's a sample from Ryan Nickell's skSeti
desktop application, a small theme that monitors my SETI@home progress:

[config menu]
bgImage=false

[internal]
desktop=0
fastTransforms=true
lockedPosition=false

[theme]
Version=0.01
background=bg.png
firstTime=No
seti_Directory=/home/marcel/setiathome/
widgetHeight=100
widgetPosX=0
widgetPosY=0
widgetWidth=100

You should find a great number of SuperKaramba themes available. Some are
Kicker panel replacements, like Sven Johannsen's Glass Machine (pictured on
the bottom of Figure 1). Aside from giving you slick access to your kicker
functions, the Glass Machine also makes all your XMMS controls handy. A little
music helps sysadmins get their work done, and several jukebox and
multimedia toys are available to choose from on the site.

Other themes are just plain fun, such as Reverant2501's TubeClock with
seconds. Older readers should find a comforting nostalgia there, and the
younger crowd simply may think it looks cool. More useful are packages such
as Chip 2003's TDE (T Desktop Enhancements), which provides a number of
tools, including a notepad and a log viewer, as well as disk, memory and
performance monitors. Chip 2003 also provides another nice multimonitor,
TMon. There's more, but let me leave you with one final monitor to experience.
It's called The (as in the only) Karamba theme. It's from artoo, and it's a
GkRellm-like monitor for SuperKaramba—everything you need to know in one
vertical monitor.

All of these SuperKaramba improvements provide a means for you to stay
informed and look good doing it. Once you start playing with these themes, you
may become the most informed administrator out there. Unfortunately, you
may not be the most productive—just a little joke, mes amis.

It appears that closing time quickly approaches—Mon Dieu! But I can see that
you all are engrossed at your various desktops installing themes to suit your
individual tastes. Perhaps François will be kind enough to refill your glasses
once more while you experiment. Until next time, mes amis, let us all drink to
one another's health. A votre santé Bon appétit!

Resources for this article: /article/7455.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of Moving to Linux: Kiss the Blue Screen of Death Goodbye! (ISBN
0-321-15998-5) from Addison Wesley. His first book is the highly acclaimed
Linux System Administration: A User's Guide (ISBN 0-201-71934-7). In real life,
he is president of Salmar Consulting, Inc., a systems integration and network
consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7455.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 EOF

Open Legal Research

Pamela Jones

Issue #121, May 2004

One little Web site about a batty lawsuit became the tech news hit of the year.
And Internet research can help clear the next legal minefield too.

Open legal research isn't a phrase in law dictionaries. Law firms normally are
secretive and keep everything very hush-hush. What we've been doing at
Groklaw is pioneering work, what Open Source Risk Management's Daniel
Egger called “a new kind of collaborative, real-time, you-can't-get-away-from-us
legal resource”. The Internet makes it possible.

Like a lot of ideas that turn out really to work, it was supposed to be something
else but morphed. When I started, it was only me, one geeky paralegal who
didn't like what The SCO Group was trying to do to Linux and decided to help.
SCO seemed to be pursuing a strategy of delaying any test of its claims in court,
while at the same time maximizing fear, uncertainty and doubt about Linux. A
lot of my early work was finding evidence to rebut SCO's public statements—
anti-FUD, if you will. I also did detailed research that I hoped would be helpful
and interesting.

Readers started to show up, first a trickle, then a flood. Groklaw today has
more than 4,500 members and a readership in the millions. Some of the
volunteers knew things I didn't, especially about the code issues, but they didn't
realize what they knew was useful legally. I decided to show them how to do
legal research and how to identify useful evidence, so I posted legal research
guides and links to sites and explained terminology, such as “promissory
estoppel” or “slander of title”, by quoting from lawyers and judges and
providing links to more information.

Groklaw's readers include direct witnesses to or even central participants in
events described in court filings and public statements. When SCOForum

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

happened and the debate began on what the code was, I simply wrote to
Dennis Ritchie and asked him. When SCO claimed to own C++, I wrote to its
author, Dr Bjarne Stroustrup, and he denied it publicly. When they claimed the
ABI files, Warrren Toomey from the UNIX Heritage Society wrote a rebuttal
article. The experts are alive and able to testify.

My volunteer Webmaster, Peter Roozemaal, switched Groklaw to Geeklog
software and wrote some needed features to facilitate collaborative work. We
have groups for different projects. I invite some to take on more
responsibilities. “Dr Stupid”, for example, is my primary lieutenant now on all
code articles.

One group tracks court postings of legal documents. Others go to the
courthouse for paper-only exhibits, while another group OCRs, another
proofreads and others research. Another group works on the quotation
database, under Leif Jensen. Still another group transcribes press conferences
and other events. IBM cited the group's Groklaw work in support of a motion it
later won.

Attorneys, including Eben Moglen, Dan Ravicher, Mark Webbink, Dennis Karjala,
Webster Knight, Lewis Mettler, Anupam Chander and others have helped with
articles, interviews and behind-the-scenes news.

To offer one example of group research and interacting with living experts, one
group of more than a dozen, led by Alex Roston, collected evidence showing
that an important contributor to the Linux kernel was Tigran Aivazian, at the
time an “old SCO” employee. He worked on some of the high-end functionality
issues involved in the IBM case. Aivazian not only reviewed the draft of the
Groklaw article, he went on the record that his contributions were with the
knowledge and permission of his supervisor, explaining in writing that he
“requested permission from Wendy (Development Director) before the release
under GPL and she confirmed that SCO has no claims to this work whatsoever
and has no objections to its release under GPL”.

Another group led by Frank Sorenson did an article on Linux ABI files, which in
my opinion undercut SCO's ability to sue end users successfully. It was a
research volunteer, Rand McNatt, who discovered that Novell was registering
UNIX copyrights, a story Groklaw broke.

 What's Next?

The whole SCO drama is really a “shot across the bow” for GNU/Linux, I believe,
and I am sure more nothing-to-lose companies will launch suits against free/
open-source code. I'm already looking beyond SCO in my research for OSRM
and Groklaw.

We have begun a new project, the Unix History Timeline Project. OSRM is
donating a portion of my time to it. This is a comprehensive oral history and
documentation project covering the important events in the licensing and
ownership history of UNIX. More than 30 other flavors of proprietary UNIX,
other than AT&T's, are available. This is a call for anyone who wishes to send
me whatever you think might be relevant.

We are determined to find and clear any potential minefields, if they exist.
Within 48 hours of first announcing the project, we had more than 400
volunteers, including most of the published historians of UNIX and many of the
people who actually contributed to UNIX in the first place. One wrote that I am
now “the maintainer of the Linux anti-lawsuit kernel”. That's a good description
of what our project is all about. It's a nice compliment as well.

I also have asked Dan Ravicher of the Public Patent Foundation to cover patents
for Groklaw in the future. Our method obviously is well suited to finding prior
art. If other attorneys wish to contribute to Groklaw, please contact me.

People are hungry to understand legal news, and they want to help. I believe
open legal research works and that there will be many more projects like ours
in the future. Groklaw is the proof of concept.

Pamela Jones is the Founder and Editor of Groklaw, which was launched in May
2003. She has just been named Director of Litigation Risk Research for Open
Source Risk Management (OSRM), which is currently preparing to offer
comprehensive vendor-neutral Open Source Defense Insurance to GNU/Linux
users.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Practical Programming in Tcl and Tk, Fourth Edition, by

Brent B. Welch, Ken Jones and Jeffrey Hobbs

Marty Leisner

Issue #121, May 2004

One of the outstanding points is that this book spells out in which versions
newer features were introduced.

Addison-Wesley, 2003

ISBN: 0-13-038560-3

$49.99 US

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Tcl and Tk are scripting languages that have been around for more than a
dozen years. This book's primary author, Brent B. Welch, was a student of Tcl's
creator, John Ousterhout, and has worked with Tcl since its invention.

I've used Tcl almost since its inception, but I never really learned the Tcl/Tk
hybrid. I read Ousterhout's Tcl and the Tk Toolkit about five years after it was
published, and I found the information difficult to apply to current programs,
because Tcl/Tk has changed over the years. This book is far more timely.

Practical Programming in Tcl and Tk, 4th Edition, is an impressive volume, at
almost 900 pages. Both the table of contents and index are thorough, and the
volume is extensively cross-referenced. Presenting so much material is difficult,
but the cross-referencing allows a number of topics to be put on the back
burner when they haven't been discussed. Furthermore, backward references
are useful for providing a refresher on old topics.

One of the outstanding points is that this book spells out in which versions
newer features were introduced. These tidbits are sprinkled throughout the
text.

The book is hands-on, and you should try the examples as you're reading the
text. All the listings are on the accompanying CD-ROM, along with distributions
of Tcl, a number of extensions and a mirror of the wonderful Tcl Wiki as of April
2003. The CD-ROM is useful if you don't have a fast Internet connection. But
what the book calls examples often are mere Tcl snippets. I would far prefer
fewer, longer examples that could execute as complete programs.

The primary author is receptive to feedback and keeps an up-to-date set of
errata on his Web site, which you should check. I'm anxious to apply what I've
learned to modify a number of Tcl programs I use and to read other books on
Tcl. I heartily recommend this book if you want to learn Tcl.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Our Last Spam Issue?

Don Marti

Issue #121, May 2004

Fight spam now and prepare to eliminate it in the future.

Get a bunch of Linux professionals together these days and the topic inevitably
turns to the spam problem. How much do you get, how many sneak through
your filters and, of course, what are the bad things that happened to you when
a spam filter decided to eat some important legitimate mail at the worst
possible time.

If you're just getting your personal e-mail via POP or IMAP, spam might merely
slow you down. But when you manage mail for a lot of users it's now a major
cost. A flood of unsolicited bulk e-mail actually made an entire university's e-
mail system obsolete. The bad news is that spam unfairly shifts the cost of
marketing from senders to recipients. The good news is that Ludovic Marcotte's
team made that cost as low as possible by deploying a reliable all-open-source
mail system on Linux and commodity hardware. When you read the success
story on page 44, notice that the site has planned to add more machines as the
spam problem gets worse.

But there is hope for the spam problem to get better in the future. We won't go
quite as ga-ga with “the end of spam is coming” predictions as some tech CTOs,
but we can make spamming less lucrative for the perpetrators and maybe just
another Net nuisance.

SPF fights forged spam by giving other sites' mail servers a way to check
whether mail is really from you. Meng Weng Wong covered how to label your
mail server as legit in our last issue, and now it's time to collect the benefits.
Follow the steps in both articles and you'll quickly block out all the spam that
claims to be from your own domain, then get more effective protection as more

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

sites use SPF. If you're joining us in the middle, there's a link to the Web version
of Part I.

System administration isn't all fun, glamour and beating back hordes of
slavering spammers to the sounds of cheers and sighs of gratitude from spam-
free users. So don't worry—we cover the important behind-the-scenes tools in
this issue too. Now, time is only unidirectional in Stephen Hawking movies and
reality. On your RPM-based Linux system, you can go back in time to correct a
good upgrade gone bad. James Olin Oden describes how to do transactions
and rollback with RPM on page 40.

If you want to get every last bit of the bandwidth you paid for, but not go over
and hit steeper charges, check out the article by David Mandelstam and Nenad
Corbic on page 54. Now you easily can make your Net traffic use whichever
connection makes sense and use low-priced, small-business connections, such
as DSL and cable modems, where you can.

Let's just take a moment to give thanks for the spammers while we have them.
Think about it—we've learned to do groovy text classifying math, we've
developed knowledge of the SMTP protocol and where future protocols can be
better, and we've given users a new appreciation of where they would be
without system administrators. Thanks, spammers.

Actually, no, on second thought, let's just put the parasites out of business.
Enjoy the issue.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Use Linux and Save

I've been a Linux user and Linux Journal subscriber since the mid-1990s. I
recently converted our home Internet machine to Linux after one too many
virus attacks. Since the conversion, we've had zero problems with viruses and
worms. Last week, my wife and I were in Funchal, Madeira, looking for an
Internet café so we could e-mail our kids. The place we found had the attached
ad in their window. Thought you'd get a chuckle out of it.

—
Frank

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advertiser Should Check Facts

The cartoon on page 27 [advertisement for Hentzenwerke Publishing—Ed.]
bothered me because it is just so blatantly inaccurate. Opera, Firebird,
WordPerfect and RealPlayer all are available for Windows, and some premiered
on that platform. There are plenty of reasons why Linux is great without having
to make up stuff!

—
Chris Schoenfeld

 You're Supposed to Eat the Penguin?

We use this image for an evangelization campaign in Mexico (cofradia.org/
modules.php?name=News&file=article&sid=7103). It is my son Luis Fernando
eating a Tux toy.

—
Fernando Romo

 Sewing Project

I have subscribed to your magazine for about a year and a half, and I love it. I
have learned so much from it. I wanted to send you a picture of my son with a

http://cofradia.org/modules.php?name=News&file=article&sid=7103
http://cofradia.org/modules.php?name=News&file=article&sid=7103

Tux shirt my wife embroidered for him. Linux is very popular here and all my
kids are getting an early start. Thanks.

—
Yossi 4Ever

 Quality Grammar

I wanted to drop you a line to express my appreciation for the extra effort you
folks appear to be making relative to the use of proper grammar. The absence
of split infinitives and the correct positioning of the word only right next to the
word or phrase it is intended to modify (rather than as early as possible in the
sentence, a horribly bad practice that often thoroughly confuses the author's
meaning) are just two examples of the high standard you are following. Thank
you—some of us out here really do notice the difference.

—
craig.p

 More Air Traffic Success

Thanks for the article on Linux in Air Traffic Control in the January 2004 LJ. Tom
Brusehaver is quite right—Linux is ready for use in ATC. I'm just back from a
tour of EuroControl, Europe's only multinational ATC. Our guide opened up the
back of a controller's console so we could see the equipment running the
displays, and when I asked him what their upgrade path was going to be from
the old Compaq Alpha boxes that currently run the displays, he said that a pilot
is now underway and Linux on x86 is scheduled to be deployed next year.

So, in 2005 Tux will be running the displays of the controllers responsible for
airspace through which 19% of all European flights pass. That penguin's come a
long way.

—
Jim Hague
Oxford, UK

 Bad Webmaster, Bad, Bad!

I currently use Mozilla on my Linux desktop. My bank recently informed me
that it will be supporting only Internet Explorer. Without an effective
counterattack against critical IE-only Web sites, the Linux Desktop and the Mac
are doomed to extinction.

—
William Mitchell

Check “Online Banking with Konqueror” for compatibility reports from smarter
banks (home.in.tum.de/~strutyns/banking.php). —Ed.

 Photo of the Month: Hey, Nice Outfit

Here is a picture of our little girl with Tux wearing her penguin Halloween
costume.

http://home.in.tum.de/~strutyns/banking.php

—
Robert Henry

If we get you the material, will you make us one too? Photo of the Month gets
you a one-year subscription. Photos to info@linuxjournal.com. —Ed.

 The ESTABLISHED Rule

I enjoyed reading Mick Bauer's “Application Proxying with Zorp, Part I” in the
March 2004 issue. In the “Firewall Refresher Course” section, Mr Bauer states
that in a stateful packet filtering system “...firewall rules need address only the
initiation of each allowed transaction.” He gives a comparative example
between stateful and non-stateful systems in Tables 1 and 2. Although Mr
Bauer was referring to stateful packet filtering systems in general, I'd like to
point out that his explanation is not correct with respect to the Linux Netfilter
package. My understanding of Netfilter, and the way I've been using it the last
two years, is that a rule is required to permit packets that are part of an existing
session to traverse the firewall (for example, -m state --state
ESTABLISHED). This assumes that a default policy of DROP is used.

—
Terry Montgomery
President of Central Valley Area Linux Enthusiasts (cvale.org)

Mick Bauer's reply: I was generalizing. The point was to explain how stateful
packet filtering differs from non-stateful filtering, not to explain how to
configure Netfilter/iptables. Given the complexity of Zorp, the real topic of that
article, I didn't want to spend more time than I had to on Netfilter basics.
Anyhow, you're correct in pointing out that for the stateful magic to work in
actual Netfilter/iptables practice, you need a single -m state --state
ESTABLISHED rule at the start of each of your chains.

 Internet Safety?

I am enjoying my second year as a subscriber to Linux Journal. PC Magazine
had a really good issue this month concerning identity theft, spyware and
viruses. This started me thinking. How does Linux combat these threats? Is it a
concern within the Linux community? How does Linux stack up in this arena?

—
Robert Stewart

mailto:info@linuxjournal.com
http://cvale.org

All of these problems are commonly spread through forged e-mail, and you can
fight forged e-mail with SPF (page 50). If you don't run your own mail server,
ask your ISP to use SPF to protect you. —Ed.

 Erratum

Regarding “Manipulating OpenOffice.org Documents with Ruby”, LJ, March 2004
—it's come to my attention that I incorrectly attributed REXML, the Ruby XML
library, to Sean Chittenden. The actual author of that library is Sean Russell. —
James Britt

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• World-Record Distributed Chess Project
• Customer Request Tracking System:
• LJ Index—May 2004
• packetbl:
• They Said It

diff -u: What's New in Kernel Development

Zack Brown

Issue #121, May 2004

The FAT filesystem still is being maintained, and, in fact, Frodo Looijaard

recently has added Linux support for some obscure FAT implementations that
required unusual characters to delineate the directory index. One problem with
FAT maintenance is the proliferation of implementations that should be
supported under Linux. Another is that the MS-DOS version may not always
clearly obey the official specification itself; in which case, as H. Peter Anvin has
put it, the rule always should be to follow the WWDD rule (What Would DOS
Do). The question of when to adhere to standards and when to slough them off
in favor of something better is a perennial one in the free software world.

Michael A. Halcrow has begun work on an encrypted filesystem. According to
his initial research, the best method will be to create an entirely seamless
encryption layer above the root filesystem, with files marked as either
encrypted or clear. Encryption keys associate with files as opposed to
directories or block devices and so forth, but a directory can be tagged
encrypted only, in which case all files within it are encrypted by default. Key and
other metadata will be stored inside Extended Attributes. Standard file data,
such as file size and permissions, will be encrypted, as far as is possible.
Deleted files will be wiped from the disk as thoroughly as they can to reduce
the possibility of recovery. A number of other interesting features appear to be
in the offing as well.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Vojtech Pavlik has produced an FAQ for problems encountered with Input

drivers. It covers such issues as how to get a list of Input drivers on the system,
how to deal with mouse or keyboard misbehavior and many others. This is the
first time these problems have been documented since the Input layer was
rewritten during 2.5 development, and a lot of folks are overjoyed to have a
central repository where their questions can be answered.

Ever since the IDE driver was rewritten, amid much turmoil and upheaval in the
2.5 development tree, efforts to fix its ability to be loaded as an external
module have been put off until the rest of its code could stabilize. Alan Cox in
particular rejected various patches from various developers attempting to
make IDE loadable as a module. A recent attempt by Witold Krecicki seemed
like a good attempt, but it looks like Bartlomiej Zolnierkiewicz's patch is more
likely to get into the 2.6 tree in the near future. Having worked intensively on
the IDE driver during the 2.5 cycle, he's apparently been developing the
loadable module patch for some time, and feels it adequately covers all the
corner- and edge-cases.

It turns out that some of the mailing lists listed in the MAINTAINERS file as
being the proper place to submit bug reports on various features actually
require that users subscribe to the lists before posting their reports. This is not
uncommon in the realm of mailing lists, but for Linux kernel development, it
has been decided that all bug-receiving lists listed in the MAINTAINERS file must
receive posts from anyone. This is the best way to welcome regular users to
submit their bug reports. One of the main reasons to require subscription
before posting has been the proliferation of spam and the attempt to keep it
out of a development mailing list. Although there are various ways of dealing
with that problem, it also has been decided that not all mailing lists in
MAINTAINERS must be completely open, as long as they have a secondary list
that does remain open to all bug reports.

A new port of the Linux kernel, called Cooperative Linux, has sprung up. Similar
to User-Mode Linux (UML), Cooperative Linux is not a port to any particular
hardware architecture but is intended to create a running Linux system on top
of an existing system. Cooperative Linux already has run on an instance of
Windows 2000 and Windows XP successfully. The Cooperative Linux developers
hope this will allow many users of other OSes to try Linux without the burden
of having to replace their existing systems with complete Linux installations.
Apparently, multiple instances of Cooperative Linux can run in parallel on a
single system, and efforts toward running Cooperative Linux on top of Linux
itself already are underway.

World-Record Distributed Chess Project

Carlos Justiniano

Issue #121, May 2004

On January 30, 2004, one of the world's top chess players, International
Grandmaster Peter Nielsen, faced a distributed computing cluster called
ChessBrain in an unprecedented man-vs-machine event. ChessBrain fought
back as it navigated well-placed traps in a game that resulted in a draw.

The ChessBrain Project plays live chess games in real time, using distributed
computing techniques similar to SETI@home and distributed.net. A central
Linux-based server called a SuperNode coordinates thousands of distributed
machines called PeerNodes.

Interest in the event was significantly greater than anticipated. As a result, a
large number of PeerNodes descended on the SuperNode in a situation that
resembled a denial-of-service attack. To address this potentially fatal situation,
ChessBrain member Gavin Roy tweaked /proc filesystem entries to modify the
TCP/IP stack's behavior. We also stopped the SuperNode from Denmark and
modified the SuperNode source code to instruct remote PeerNodes to change
the frequency of their connection attempts. We were able to address the
situation in real time without rebooting a single machine.

ChessBrain's official Guinness World Record attempt was hosted by the Danish
UNIX Users Group (DKUUG) at the Symbion Science Park in Copenhagen,
Denmark, and supported by the US-based Distributed Computing Foundation.
With a new record involving 2,070 computers from 56 different countries,
ChessBrain has become the first distributed network to play a game against a
single human opponent. This gives new meaning to “Powered by Linux!”

https://secure2.linuxjournal.com/ljarchive/LJ/121/7408chessf1.large.jpg

The ChessBrain team swaps notes with GM Peter Nielsen (right) after the game.

Carlos Justiniano is the founder of ChessBrain.net. His article “ChessBrain: a
Linux-Based Distributed Computing Experiment” appeared in the September
2003 issue of Linux Journal.

Customer Request Tracking System: www.coreunix.com/custom

David A. Bandel

Issue #121, May 2004

Have you tried other ticket tracking systems and found that they're too
complex or that they don't keep you and your customers in contact well
enough? This ticket tracking system is simple to use for both customers and
technicians, and it e-mails responses to customers so they know immediately
when their request was processed. If you need a simple, easy-to-use tracking
system, this might be the one for you. Requires: Web server; Perl; Perl modules
CGI, DBI, Net::SMTP, Socket, File::Copy; and PostgreSQL.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7408chessf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7408chessf1.large.jpg
http://www.coreunix.com/custom
https://secure2.linuxjournal.com/ljarchive/LJ/121/7408ctsf1.large.jpg

LJ Index—May 2004

• 1. Percentage of surveyed enterprises that say they will increase Linux
spending next year: 60

• 2. Percent surveyed that say they will increase Linux spending by 6% to
10%: 17

• 3. Percent surveyed that say they will increase Linux spending next year
by 10% more than last year: 43

• 4. Percent surveyed that say their top spending on Linux will be in
upgrading the OS: 35

• 5. Percent surveyed that say their top spending on Linux will go to server
hardware upgrades: 30.5

• 6. Percent surveyed that say their top spending on Linux will go to data
center migrations: 29.5

• 7. Projected increase factor in hardware spending at UAL Loyalty Services:
10

• 8. Percent surveyed that say data center migration is top priority among
Linux-related projects for 2004: 30

https://secure2.linuxjournal.com/ljarchive/LJ/121/7408ctsf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7408ctsf1.large.jpg

• 9. Percentage of above who say they'll be spending up to $99,000 US on
that migration: 13

• 10. Percentage of above who say they'll be spending between $100,000
and $499,000 US: 52.7

• 11. Number of months it takes IT to get an internal application to full
deployment: 9

• 12. Thousands of PCs in a French study toward the possible replacement
of Microsoft Windows with Linux: 17

• 13. Hundreds of applications in the same study: 6
• 14. Hundreds of servers in the same study: 4
• 15. Thousands of police computers switched to Linux from Windows in

Lower Saxony, Germany: 11
• 16. Percentage of all European computers that now run Linux: 15

• 17. Percentage that said “Wait” in response to the eWeek survey of
respondents' willingness to wait until 2006 for Microsoft's Longhorn OS:
35

• 18. Percentage that said “Switch to Linux desktop” in response to the
eWeek survey of respondents' willingness to wait until 2006 for
Microsoft's Longhorn OS: 40

• 19. Popularity position of Red Hat among all Linux distributions, according
to Netcraft: 1

• 20. Fastest growth position of Debian among all Linux distributions,
according to Netcraft: 1

• 1–10: SearchEnterpriseLinux.com
• 11: IDC
• 12–16: ZDnet

• 17, 18: eWeek

• 19, 20: Netcraft

packetbl: freshmeat.net/redir/packetbl/47435/url_tgz/packetbl-0.3.tar.gz

David A. Bandel

Issue #121, May 2004

This is a real-time blacklist module for iptables/Netfilter. If you run one or more
mail servers, you can save processing time by running this module on your
Linux router. The module can check incoming port 25 connections against the
spam blacklists and drop those packets before your mail servers even see
them. Requires: libdotconf and glibc.

http://freshmeat.net/redir/packetbl/47435/url_tgz/packetbl-0.3.tar.gz

They Said It

How are you going to write software that is useful for people if you don't know
if or how they're using your features? Answer these questions: What
percentage of bug reports to open-source projects are submitted by employees
of financial services firms? Which industries have the highest patch submission
to running copies ratio?

—Robert Lefkowitz, from his talk at OSCON

There's a fine line between participation and mockery.

—Scott Adams (www.photodude.com/index.shtml)

One way to fix this is to “increase the dimensionality of the discrimination
hyperspace” (no, I am not making that phrase up).

—Bill Yerazunis, CRM114 & Mailfilter HOWTO

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.photodude.com/index.shtml
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

Linux Users, Old and New

Heather Mead

Issue #121, May 2004

Learn how to update Bogofilter, deploy Linux desktops and clear up TCP/IP
network traffic with this month's articles.

Back in November 2002, Nick Moffitt wrote a brief tutorial titled “Busting Spam
with Bogofilter, Procmail and Mutt” (/article/6439) for the Linux Journal Web
site. He provided a Bogofilter configuration that made it easy to mark incoming
messages as spam or non-spam. Nick's article still receives a number of hits as
people continue to look for ways to manage their mailboxes. The problem,
however, is command-line switches to Bogofilter have been reversed as of
March 2003, “so they now have the exact opposite effect”. In other words,
follow the original article and you'll be training your spam filter to keep the
spam and ditch the legit mail. To save readers some frustration, Nick wrote a
follow-up article for our Web site, “Busting Spam with Bogofilter, Procmail and
Mutt, Revisited” (/article/7436). If you used Nick's first implementation or are
looking for another spam-fighting tool, be sure to read his update.

If you're in charge of a network whose servers use asymmetric TCP/IP routing,
you may have noticed artificial bandwidth bottlenecks as all traffic goes out one
interface, leaving the other idle. In “Overcoming Asymmetric Routing on Multi-
Homed Servers” (www.linuxjournal.com/article/7291), Patrick McManus
explains how to use source-based routing capabilities, similar to the ones used
in high-end networking gear, to improve traffic flow in server environments.
Specifically, he discusses the iproute2 package, which can be used to control
routing behavior as well as to “set up interfaces, control arp behavior, do NAT
and establish tunnels”. As Patrick states, “the key difference in an iproute2
world is the system may contain many different destination-based routing
tables instead of a single global system table.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6439.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/7436.html
http://www.linuxjournal.com/article/7291

When William Yu and Dominique Cimafranca were given the green light to
install Linux on the desktops of a pilot group at their company, they were told
the work had to be completed in half a day. Plus, if the pilot group didn't like
the Linux desktops, their Windows desktops needed to be reinstated just as
quickly. Given the age of the machines they were working with, plus memory
limitations and the presence of a decent Ethernet infrastructure, they decided
thin clients would be the best approach. Their article, “Desktop Guerilla Tactics:
a Portable Thin Client Approach” (www.linuxjournal.com/article/7109), details
their experience with using the VNC remote display system, assembling a
floppy-based distribution and setting up a fat server. Read their article on-line
to see how the pilot group reacted to the new desktop.

As more and more people make the move to Linux, whether it be at work or at
home, interest in end-user applications grows. In response, the Linux Journal
Web site has acquired some new columnists, including Dave Phillips, Chris
DiBona and Bruce Byfield, who will write regularly on such topics as Linux
audio, tasks for new Linux users and OpenOffice.org. Dave's Linux audio series
already has a few columns posted providing introductions to AGNULA and
Planet CCRMA. His March column, “At the Sounding Edge: OpenMusic and
SuperCollider3” (www.linuxjournal.com/article/7432), discusses two new Mac
audio application ports to Linux.

If there's a topic or application you'd like to see covered on the Linux Journal
Web site, or if you'd like to write an article, drop me a line at
info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7109
http://www.linuxjournal.com/article/7432
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

Slow Backups

I moved our Samba server (Red Hat 7.3, PII) to a new PC (Red Hat 9, P4). I have a
cron job set up to create daily backups from shares using smbtar. I have
installed all the latest patches using up2date. Problem: this backup script is
running much more slowly on the new configuration than on the old one. Any
ideas why this might be?

—
Zoltan Sutto

sutto.zoltan@rutinsoft.hu

My first guess is Ethernet drivers. Make sure they are the latest and greatest. I
also have had issues with Ethernet auto-negotiating speed. Make sure you are
at 100BT/full duplex.

—
Christopher Wingert

cwingert@qualcomm.com

If you really wanted to analyze the problem, you'd start by running the smbtar
script with tracing turned on (the -x option to bash). That's because smbtar is a
shell script. Then, you could eyeball it to see which commands were taking a
long time. You also could (more invasively) edit a copy of the script, inserting
calls to take timestamps (relative and absolute) between calls to external
commands. These could be written to a profiling file or simply sent to the
system logs using the logger command. You can use shell expressions like:

START_TIME="$(date +%s)"; REL_TIME="$START_TIME"
REL_TIME="$(($(date +%s) - $REL_TIME))"
...

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sutto.zoltan@rutinsoft.hu
mailto:cwingert@qualcomm.com

to get the current time (as a number of seconds since the epoch in 1970). Thus,
the total elapsed time for your script would be the current time minus the
$START_TIME that you set as the first line of the script.

Also consider that differences in your configuration might be introducing some
odd network name services delays, for example, if your old /etc/hosts file had
some entries that made reverse DNS queries work and the new installation has
failed to preserve those, or if your old /etc/nsswitch.conf was only checking
local files and your new one is somehow querying NIS, LDAP or winbind (MS
Windows domain) sources. Because winbind is in newer Red Hat systems after
7.3, it could be the culprit.

Performance tuning is a process of taking measurements (profiling) to find
bottlenecks (analysis) and eliminate those where possible (tuning). Usually the
elimination of bottlenecks involves finding cases where the system is doing
work unnecessary to your application, for example, querying network-based
directory services rather than simply using local files.

Sometimes you should consider an entirely different approach to the task at
hand. In this case, I'd seriously consider not using smbtar to back up these
Samba shares. You simply can use rsync to synchronize the selected (shared)
directory trees to one large holding disk on the system with the tape drive.
Then, back that up directly to tape.

—
Jim Dennis

jimd@starshine.org

It could be that your new system is not getting as much throughput to your
hard disks as it should be. I'm assuming you have IDE disks. Default installs on
some Linux distributions don't necessarily enable DMA by default; it has to be
enabled explicitly after install. You can use hdparm to verify/test your drive (in
my case, my system is on /dev/hda):

[root@hamtop ~]# hdparm /dev/hda

/dev/hda:
multcount = 16 (on)
IO_support = 0 (default 16-bit)
unmaskirq = 0 (off)
using_dma = 1 (on)
keepsettings = 0 (off)
readonly = 0 (off)
readahead = 8 (on)
geometry = 3648/255/63, sectors = 58605120, start = 0

mailto:jimd@starshine.org

Check the using_dma entry. If yours is set to 0, that could explain it. Try setting
it to hdparm -d1 /dev/hdX, where X is your drive letter. Then test it:

[root@hamtop ~]# hdparm -tT /dev/hda

/dev/hda:
Timing buffer-cache reads: 128 MB in 0.82 seconds = 156.10 MB/sec
Timing buffered disk reads: 64 MB in 2.68 seconds = 23.88 MB/sec

You should see the buffered disk reads go up considerably compared to what
you get from running the same test without DMA enabled. Thoroughly test the
drive with DMA enabled before relying on it, as in rare cases older drives don't
behave well with this set. If this does fix it, read up on how your particular
distribution can be made to enable this at boot. In the case of Red Hat, it can be
controlled through /etc/sysconfig/harddisks.

—
Timothy Hamlin

thamlin@zeus.nmt.edu

How to Recover a Kernel .config File?

I have reconfigured the Linux kernel on my computer to version 2.4.22, but at
the boot screen, I still have the option to choose between version 2.4.20-8 and
2.4.22. My problem is I do not have the .config file for the 2.4.20-8 kernel, and
I'd like to know whether there is a command to generate this file?

—
Jan Nicolas Myklebust

jan-nicolas.myklebust@cnes.fr

If this is the default Red Hat kernel, you can unpack the kernel source package
and grab the .config file from the /usr/src/linux-2.4/configs directory.

—
Christopher Wingert

cwingert@qualcomm.com

There isn't a command to generate a .config file from a kernel image in 2.4.x
and earlier. In the new 2.6 kernels, a compile-time option supports this.

mailto:thamlin@zeus.nmt.edu
mailto:jan-nicolas.myklebust@cnes.fr
mailto:cwingert@qualcomm.com

—
Jim Dennis

jimd@starshine.org

bash without History

The February 2004 BTS column had a question about hiding mistakenly entered
information from the bash history. If you kill your own bash process with kill
-9 $$ instead of logging out, it doesn't write history to disk.

—
Jack Coates

jack@monkeynoodle.org

 Can't Make a Partition on Free Disk Space

The current partitioning on my Red Hat 9 system is:

hda1 20GB Windows
hda2 7GB Linux /
hda3 12GB Linux /usr
swap 1GB

I have resized hda1 down to 8GB using GNU parted, thus getting 12GB of free
space. Now I want to make a new Linux partition on the unused 12GB. The
problem is, the parted mkpart command simply says can't make
partition and the fdisk n command says delete a partition
before you make new partition.

—
Hiroshi Iwatani

HGA03630@nifty.ne.jp

Sounds like you have four primary partitions already, and the maximum is four.
You need to delete a partition and add a logical partition, which can encompass
many more partitions. I would turn off swap, delete the swap partition, add a
logical partition including all free space, add a new swap partition, run mkswap,
add and format your data partition and then turn on swap. You should also
update /etc/fstab for the new swap and data partition.

—

mailto:jimd@starshine.org
mailto:jack@monkeynoodle.org
mailto:HGA03630@nifty.ne.jp

Christopher Wingert

cwingert@qualcomm.com

 Quick Crossover Networking

How can I use a cross-link Ethernet cable to transfer data from one computer to
the other when both are Debian sarge and when one is sarge and the other is
Microsoft Windows?

—
Akos Zelei

azelei@freemail.hu

You simply can give each of the two machines any arbitrary IP addresses from
the same network (I'd recommend using the RFC1918 address blocks reserved
for these purposes: 192.168.x.*—so call one 192.168.1.1 and the other
1982.168.1.2). If you choose the addresses wisely (or follow my example) you
can leave the subnet and broadcast values at their defaults. You then should be
able to ping each from the other. At that point, you also should be able to run
any normal TCP/IP protocols over that link. You can use the IP addresses or add
entries for left and right in the /etc/hosts files on each. At that point you'd use
rsync, scp or any protocol you liked across them. As for the Windows system:
you can create a static IP address configuration manually and either use its
native file sharing (configure Samba on the Debian GNU/Linux system) or install
the Cygwin for MS Windows suite and use rsync over SSH and so on.

—
Jim Dennis

jimd@starshine.org

If you don't want to set up the Linux system as a Samba server, put putty on the
Windows box (www.chiark.greenend.org.uk/~sgtatham/putty). Or, if the
Windows box is already set up to share files, you can use smbclient from Linux.

—
Don Marti

info@linuxjournal.com

mailto:cwingert@qualcomm.com
mailto:azelei@freemail.hu
mailto:jimd@starshine.org
http://www.chiark.greenend.org.uk/~sgtatham/putty
mailto:info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

Altix 350, IVR100B, Desktop/LX Pocket PC Edition and more.

Altix 350

SGI's Altix 350 server scales from one to 16 64-bit Itanium 2 processors (regular
as well as low voltage) and up to 192GB of global shared memory in a single
system. The 350 also uses the 6.4GB/sec SGI NUMAlink interconnect. It is
capable of independently scaling across processors, shared memory and/or I/O
on a single, standard chassis with different expansion modules, making it
suitable for demanding technical applications. Along with the 350, SGI offers
ProPack software, which includes tools, libraries and performance
improvements that build on system, data and resource management features
in the standard Linux distribution.

Silicon Graphics, Inc., 1500 Crittenden Lane, Mountain View, California 94043,
650-960-1980, www.sgi.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

IVR100B

The IVR100B is a rackmountable telecom application server for interactive voice
response (IVR) applications, based on the GNU/Linux OS and Bayonne. It ships
standard with a four-port Pike Inline GT voice resource card that is expandable
to 24 ports. The IVR100B features a Pentium-class SBC with at least 32MB of
RAM, an onboard USB and 10/100 Ethernet and a Quantum Fireball LM IDE
hard drive. A standard set of IVR applications capable of interfacing with
database, Web and mail servers are included with the IVR100B.

Open Source Telecom Corporation, 278 Hope Street Suite E, Mountain View,
California 94041, 866-688-6423, www.ostel.com.

Desktop/LX Pocket PC Edition

Lycoris announced the Desktop/LX Pocket PC Edition of its Linux OS customized
for handheld devices. Based entirely on open standards, this edition supports
wired, USB, infrared and 802.11b networking. It also provides a full-service PIM
suite, supports full HTML and CSS 4 protocols and POP3 e-mail and enables
playback of audio, video and streaming-media formats. Device input support
includes gesture-based handwriting recognition, onscreen keyboard, built-in
touchscreen, pickboard and a physical keyboard. Desktop/LX Pocket PC Edition
also offers support for select StrongARM- and XScale-based processors and
chipsets.

Lycoris, 26828 Maple Valley Highway #259, Maple Valley, Washington 98038,
425-738-6604, www.lycoris.com.

ADNP/ESC1 with uClinux

SSV Embedded Systems releases the ADNP/ESC1, an FPGA-based DIL/NetPC
built specifically for embedded softcore computing (ESC). An Altera EP1C6F256
Cyclone FPGA is used in the ADNP/ESC1 instead of an MCU. The ADNP/ESC1
offers a 32-bit NIOS-Softcore processor with two UARTs, 20-bit PIO, SPI, JTAG,
an IDE CompactFlash interface and a 16-bit expansion bus with chip select
outputs and interrupt inputs. The module includes 12MB of SDRAM, 8MB of
Flash and a 10/100 Ethernet controller. A starter kit is available for system
integration. It includes a networking prototyping board, sample applications
and the uClinux OS, based on the 2.4 kernel.

SSV Embedded Systems, Heisterbergallee 72, D-30453 Hannover, Germany,
www.ssv-embedded.de.

Tripwire for Network Devices 3.0

Tripwire for Network Devices 3.0 is multivendor network configuration
management software that centrally manages, monitors and reports changes
made to network components. In addition to heterogeneous device support,
Tripwire offers version control, in which an archive of configurations for every
device is maintained and updated automatically whenever change is detected.
Tripwire for Network Devices can scale to tens of thousands of nodes that can
be organized in logical groups. It integrates with user authentication, access
and accounting applications to manage passwords and user access rights.
Tripwire also offers baseline restorations, real-time integrity scans and proof of
conformance.

Tripwire, Inc., 326 SW Broadway, 3rd Floor, Portland, Oregon 97205,
800-874-7947, www.tripwire.com.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7410f4.large.jpg

REALbasic 5.5

REALbasic 5.5 is a development tool for creating cross-platform software for
Linux, Windows and Mac. REALbasic includes the VB Project Converter tool to
migrate tables, forms and code to REALbasic to get applications ported to Linux
or Macintosh. REALbasic 5.5 supports Linux for x86 Intel platforms running Red
Hat Enterprise or SuSE, as well as other distributions with the GTK+ 2.0 and
CUPS libraries. Remote debugging is included so Linux applications can be
tested and debugged from either Windows or Mac environments. Other
additions and upgrades for version 5.5 include improved user interfaces,
improved MS Office compatability, extended Mac OS X support, better
database support and support for SOAP, XML and APIs.

REAL Software, 1705 South Capital of Texas Highway, Suite 310, Austin, Texas
78746, 512-328-7325, www.realsoftware.com.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7410f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7410f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7410f5.large.jpg

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/121/7410f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/121/7410f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/121/toc121.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Review
	Departments
	Transactions and Rollback with RPM
	James Olin Oden
	Rolling Back an Upgrade the Hard Way
	Transactional Rollbacks to the Rescue
	How RPM Transactional Rollbacks Work
	How to Use RPM Transactional Rollbacks
	How to Set Up a System for Rollbacks
	Using up2date to Roll Back RPM Transactions
	Auto-Rollback Patch
	Conclusion

	HEC Montréal: Deployment of a Large-Scale Mail Installation
	Ludovic

Marcotte
	The Proposed Solution
	Migration
	Key Statistics
	Conclusion

	SPF, MTAs and SRS
	Meng
 Weng
Wong
	It's Your Turn
	Adding SPF to Your MTA
	Sendmail
	Postfix
	Exim
	Qmail
	Testing the Plugin
	Received-SPF: What the Codes Mean
	The Price of SPF

	Policy Routing for Fun and Profit
	David Mandelstam
	Nenad Corbic
	Bandwidth and Costs
	Policy Routing with iptables and iproute2
	Input over Ethernet
	Routing Tables
	Masquerading Outgoing Traffic
	IP Accounting
	Traffic Control
	Results
	Conclusion

	The Linux-Based Recording Studio
	Aaron Trumm
	How to Set Up a Linux Studio
	Analog-to-Digital Conversion
	The Mixer: Analog, Digital or Software?
	Microphones
	Preamps
	Monitoring
	Digital Recorder
	Space
	Practice

	Using SQL-Ledger for Your Business
	David
 A.
Bandel
	Installation
	Configuration and Security
	Running SQL-Ledger
	Using SQL-Ledger in Your Business
	Coming Attractions?
	Support
	Conclusion

	Automating Tasks with Aap
	Bram Moolenaar
	Installing Aap
	Maintaining a Web Site
	Listing the Image Files
	Generating HTML Files
	Adding a Timestamp
	Uploading with rsync
	Building a Program
	Building Variants
	Building with Another Language
	Building a KDE Application
	Using Aap as a Better make
	Installing Packages
	Conclusion

	How to Build LSB Applications
	Stuart R. Anderson
	Origins of the LSB
	Structure of the LSB
	Contents of the LSB
	The LSB Build Environment
	Making It Easy
	Using the LSB Development Environment
	Testing Tool
	Packaging
	Does This Really Work?
	What about C++ Applications?
	Future Directions
	Acknowledgements

	Shielded CPUs: Real-Time Performance in Standard Linux
	Steve

Brosky
	Real-Time Means Guarantees, Not Merely Speed
	What Is a Shielded CPU?
	Implementing Shielded CPUs
	Performance Tests
	Testing Results
	Conclusions

	At the Forge
	Blosxom
	Reuven
 M.
Lerner
	Installation
	Adding Entries
	Flavours
	Plugins
	Writing Plugins
	Conclusion

	Kernel Korner
	Using DMA
	James Bottomley
	SG Lists
	I/O Memory Management Units (IOMMUs)
	GARTs and IOMMU Bypass
	Bus Widths and DMA Masks
	DMA and Coherency
	Bus Posting (Caching)
	Using the DMA API in a Device Driver
	Device Operation
	Accessing Data in the DMA region
	Allocating Coherent Memory
	Conclusions

	Cooking with Linux
	Eye Candy for Admins? Aye, SuperKaramba!
	Marcel Gagné

	EOF
	Open Legal Research
	Pamela

Jones
	What's Next?

	Practical Programming in Tcl and Tk, Fourth Edition, by
Brent B. Welch, Ken Jones and Jeffrey Hobbs
	Marty Leisner

	From the Editor
	Our Last Spam Issue?
	Don Marti

	Letters
	Use Linux and Save
	Advertiser Should Check Facts
	You're Supposed to Eat the Penguin?
	Sewing Project
	Quality Grammar
	More Air Traffic Success
	Bad Webmaster, Bad, Bad!
	Photo of the Month: Hey, Nice Outfit
	The ESTABLISHED Rule
	Internet Safety?
	Erratum

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	World-Record Distributed Chess Project
	Carlos Justiniano

	Customer Request Tracking System: www.coreunix.com/custom
	David A. Bandel

	LJ Index—May 2004
	packetbl: freshmeat.net/redir/packetbl/47435/url_tgz/packetbl-0.3.tar.gz
	David A. Bandel

	They Said It

	On the Web
	Linux Users, Old and New
	Heather Mead

	Best of Technical Support
	Slow Backups
	How to Recover a Kernel .config File?
	bash without History
	Can't Make a Partition on Free Disk Space
	Quick Crossover Networking

	New Products
	Altix 350
	IVR100B
	Desktop/LX Pocket PC Edition
	ADNP/ESC1 with uClinux
	Tripwire for Network Devices 3.0
	REALbasic 5.5

